<< Chapter < Page Chapter >> Page >

Making connections: conservation of energy

Lenz’s law is a manifestation of the conservation of energy. The induced emf produces a current that opposes the change in flux, because a change in flux means a change in energy. Energy can enter or leave, but not instantaneously. Lenz’s law is a consequence. As the change begins, the law says induction opposes and, thus, slows the change. In fact, if the induced emf were in the same direction as the change in flux, there would be a positive feedback that would give us free energy from no apparent source—conservation of energy would be violated.

Calculating emf: how great is the induced emf?

Calculate the magnitude of the induced emf when the magnet in [link] (a) is thrust into the coil, given the following information: the single loop coil has a radius of 6.00 cm and the average value of B cos θ size 12{B"cos"θ} {} (this is given, since the bar magnet’s field is complex) increases from 0.0500 T to 0.250 T in 0.100 s.


To find the magnitude of emf, we use Faraday’s law of induction as stated by emf = N Δ Φ Δ t , but without the minus sign that indicates direction:

emf = N Δ Φ Δ t .


We are given that N = 1 size 12{N=1} {} and Δ t = 0 . 100 s , but we must determine the change in flux Δ Φ size 12{ΔΦ} {} before we can find emf. Since the area of the loop is fixed, we see that

Δ Φ = Δ ( BA cos θ ) = A Δ ( B cos θ ). size 12{ΔΦ=Δ \( BA"cos"θ \) =AΔ \( B"cos"θ \) } {}

Now Δ ( B cos θ ) = 0 . 200 T size 12{Δ \( B"cos"θ \) =0 "." "200"`T} {} , since it was given that B cos θ size 12{B"cos"θ} {} changes from 0.0500 to 0.250 T. The area of the loop is A = πr 2 = ( 3 . 14 . . . ) ( 0 . 060 m ) 2 = 1 . 13 × 10 2 m 2 size 12{A=πr rSup { size 8{2} } = \( 3 "." "14" "." "." "." \) \( 0 "." "060"`m \) rSup { size 8{2} } =1 "." "13" times "10" rSup { size 8{ - 2} } `m rSup { size 8{2} } } {} . Thus,

Δ Φ = ( 1.13 × 10 2 m 2 ) ( 0.200 T ). size 12{ΔΦ= \( 1 "." "13" times "10" rSup { size 8{ - 2} } " m" rSup { size 8{2} } \) \( 0 "." "200"" T" \) } {}

Entering the determined values into the expression for emf gives

Emf = N Δ Φ Δ t = ( 1.13 × 10 2 m 2 ) ( 0 . 200 T ) 0 . 100 s = 22 . 6 mV. size 12{E=N { {ΔΦ} over {Δt} } = { { \( 1 "." "13" times "10" rSup { size 8{ - 2} } " m" rSup { size 8{2} } \) \( 0 "." "200"" T" \) } over {0 "." "100"" s"} } ="22" "." 6" mV"} {}


While this is an easily measured voltage, it is certainly not large enough for most practical applications. More loops in the coil, a stronger magnet, and faster movement make induction the practical source of voltages that it is.

Got questions? Get instant answers now!

Phet explorations: faraday's electromagnetic lab

Play with a bar magnet and coils to learn about Faraday's law. Move a bar magnet near one or two coils to make a light bulb glow. View the magnetic field lines. A meter shows the direction and magnitude of the current. View the magnetic field lines or use a meter to show the direction and magnitude of the current. You can also play with electromagnets, generators and transformers!

Faraday's Electromagnetic Lab

Section summary

  • Faraday’s law of induction states that the emf induced by a change in magnetic flux is
    emf = N Δ Φ Δ t size 12{"emf"= - N { {ΔΦ} over {Δt} } } {}

    when flux changes by Δ Φ size 12{ΔΦ} {} in a time Δ t size 12{Δt} {} .

  • If emf is induced in a coil, N is its number of turns.
  • The minus sign means that the emf creates a current I size 12{I} {} and magnetic field B size 12{B} {} that oppose the change in flux Δ Φ size 12{ΔΦ} {} —this opposition is known as Lenz’s law.

Conceptual questions

A person who works with large magnets sometimes places her head inside a strong field. She reports feeling dizzy as she quickly turns her head. How might this be associated with induction?

Got questions? Get instant answers now!

A particle accelerator sends high-velocity charged particles down an evacuated pipe. Explain how a coil of wire wrapped around the pipe could detect the passage of individual particles. Sketch a graph of the voltage output of the coil as a single particle passes through it.

Got questions? Get instant answers now!

Questions & Answers

does the force in a system result in the energy transfer?
Lebatam Reply
full meaning of GPS system
Anaele Reply
how to prove that Newton's law of universal gravitation F = GmM ______ R²
Kaka Reply
sir dose it apply to the human system
Olubukola Reply
prove that the centrimental force Fc= M1V² _________ r
Kaka Reply
prove that centripetal force Fc = MV² ______ r
how lesers can transmit information
mitul Reply
griffts bridge derivative
Ganesh Reply
below me
please explain; when a glass rod is rubbed with silk, it becomes positive and the silk becomes negative- yet both attracts dust. does dust have third types of charge that is attracted to both positive and negative
Timothy Reply
what is a conductor
below me
why below you
no....I said below me ...... nothing below .....ok?
dust particles contains both positive and negative charge particles
corona charge can verify
when pressure increases the temperature remain what?
Ibrahim Reply
remains the temperature
what is frequency
Mbionyi Reply
define precision briefly
Sujitha Reply
CT scanners do not detect details smaller than about 0.5 mm. Is this limitation due to the wavelength of x rays? Explain.
hope this helps
what's critical angle
Mahmud Reply
The Critical Angle Derivation So the critical angle is defined as the angle of incidence that provides an angle of refraction of 90-degrees. Make particular note that the critical angle is an angle of incidence value. For the water-air boundary, the critical angle is 48.6-degrees.
dude.....next time Google it
okay whatever
pls who can give the definition of relative density?
the ratio of the density of a substance to the density of a standard, usually water for a liquid or solid, and air for a gas.
What is momentum
aliyu Reply
mass ×velocity
it is the product of mass ×velocity of an object
how do I highlight a sentence]p? I select the sentence but get options like copy or web search but no highlight. tks. src
Sean Reply
then you can edit your work anyway you want
Practice Key Terms 2

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?