<< Chapter < Page Chapter >> Page >
  • Sketch voltage and current versus time in simple inductive, capacitive, and resistive circuits.
  • Calculate inductive and capacitive reactance.
  • Calculate current and/or voltage in simple inductive, capacitive, and resistive circuits.

Many circuits also contain capacitors and inductors, in addition to resistors and an AC voltage source. We have seen how capacitors and inductors respond to DC voltage when it is switched on and off. We will now explore how inductors and capacitors react to sinusoidal AC voltage.

Inductors and inductive reactance

Suppose an inductor is connected directly to an AC voltage source, as shown in [link] . It is reasonable to assume negligible resistance, since in practice we can make the resistance of an inductor so small that it has a negligible effect on the circuit. Also shown is a graph of voltage and current as functions of time.

Part a of the figure describes an A C voltage source V connected across an inductor L. The voltage across the inductance is shown as V L. Part b of the figure describes a graph showing the variation of current and voltage across the inductance as a function of time. The voltage V L and current I L is plotted along the Y axis and the time t is along the X axis. The graph for current is a progressive sine wave from the origin. The graph for voltage V is a cosine wave and an amplitude slightly less than the current wave.
(a) An AC voltage source in series with an inductor having negligible resistance. (b) Graph of current and voltage across the inductor as functions of time.

The graph in [link] (b) starts with voltage at a maximum. Note that the current starts at zero and rises to its peak after the voltage that drives it, just as was the case when DC voltage was switched on in the preceding section. When the voltage becomes negative at point a, the current begins to decrease; it becomes zero at point b, where voltage is its most negative. The current then becomes negative, again following the voltage. The voltage becomes positive at point c and begins to make the current less negative. At point d, the current goes through zero just as the voltage reaches its positive peak to start another cycle. This behavior is summarized as follows:

Ac voltage in an inductor

When a sinusoidal voltage is applied to an inductor, the voltage leads the current by one-fourth of a cycle, or by a 90º phase angle.

Current lags behind voltage, since inductors oppose change in current. Changing current induces a back emf V = L ( Δ I / Δ t ) size 12{V= - L \( ΔI/Δt \) } {} . This is considered to be an effective resistance of the inductor to AC. The rms current I size 12{I} {} through an inductor L size 12{L} {} is given by a version of Ohm’s law:

I = V X L , size 12{I= { {V} over {X rSub { size 8{L} } } } } {}

where V is the rms voltage across the inductor and X L size 12{X rSub { size 8{L} } } {} is defined to be

X L = fL , size 12{X rSub { size 8{L} } =2π ital "fL"} {}

with f size 12{f} {} the frequency of the AC voltage source in hertz (An analysis of the circuit using Kirchhoff’s loop rule and calculus actually produces this expression). X L size 12{X rSub { size 8{L} } } {} is called the inductive reactance    , because the inductor reacts to impede the current. X L size 12{X rSub { size 8{L} } } {} has units of ohms ( 1 H = 1 Ω s , so that frequency times inductance has units of ( cycles/s ) ( Ω s ) = Ω size 12{ \( "cycles/s" \) \( ` %OMEGA cdot s \) = %OMEGA } {} ), consistent with its role as an effective resistance. It makes sense that X L size 12{X rSub { size 8{L} } } {} is proportional to L size 12{L} {} , since the greater the induction the greater its resistance to change. It is also reasonable that X L size 12{X rSub { size 8{L} } } {} is proportional to frequency f size 12{f} {} , since greater frequency means greater change in current. That is, Δ I t size 12{ΔI} {} is large for large frequencies (large f size 12{f} {} , small Δ t size 12{Δt} {} ). The greater the change, the greater the opposition of an inductor.

Calculating inductive reactance and then current

(a) Calculate the inductive reactance of a 3.00 mH inductor when 60.0 Hz and 10.0 kHz AC voltages are applied. (b) What is the rms current at each frequency if the applied rms voltage is 120 V?

Strategy

The inductive reactance is found directly from the expression X L = fL size 12{X rSub { size 8{L} } =2π ital "fL"} {} . Once X L size 12{X rSub { size 8{L} } } {} has been found at each frequency, Ohm’s law as stated in the Equation I = V / X L size 12{I=V/X rSub { size 8{L} } } {} can be used to find the current at each frequency.

Solution for (a)

Entering the frequency and inductance into Equation X L = fL size 12{X rSub { size 8{L} } =2π ital "fL"} {} gives

X L = fL = 6.28 ( 60.0 / s ) ( 3.00 mH ) = 1.13 Ω at 60 Hz .

Similarly, at 10 kHz,

X L = fL = 6 . 28 ( 1.00 × 10 4 /s ) ( 3 . 00 mH ) = 188 Ω at 10 kHz . size 12{X rSub { size 8{L} } =2π ital "fL"=6 "." "28" \( 3 "." "00"" mH" \) ="188" %OMEGA } {}

Solution for (b)

The rms current is now found using the version of Ohm’s law in Equation I = V / X L size 12{I=V/X rSub { size 8{L} } } {} , given the applied rms voltage is 120 V. For the first frequency, this yields

I = V X L = 120 V 1.13 Ω = 106 A at 60 Hz .

Similarly, at 10 kHz,

I = V X L = 120 V 188 Ω = 0.637 A at 10 kHz . size 12{I= { {V} over {X rSub { size 8{L} } } } = { {"120"" V"} over {"188 " %OMEGA } } =0 "." "637"" A"} {}

Discussion

The inductor reacts very differently at the two different frequencies. At the higher frequency, its reactance is large and the current is small, consistent with how an inductor impedes rapid change. Thus high frequencies are impeded the most. Inductors can be used to filter out high frequencies; for example, a large inductor can be put in series with a sound reproduction system or in series with your home computer to reduce high-frequency sound output from your speakers or high-frequency power spikes into your computer.

Got questions? Get instant answers now!

Questions & Answers

What does mean ohms law imply
Victoria Reply
what is matter
folajin Reply
Anything that occupies space
Kevin
Any thing that has weight and occupies space
Victoria
Anything which we can feel by any of our 5 sense organs
Suraj
Right
Roben
thanks
Suraj
what is a sulphate
Alo
any answers
Alo
the time rate of increase in velocity is called
Blessing Reply
acceleration
Emma
What is uniform velocity
Victoria
Greetings,users of that wonderful app.
Frank Reply
how to solve pressure?
Cruz Reply
how do we calculate weight and eara eg an elefant that weight 2000kg has four fits or legs search of surface eara is 0.1m2(1metre square) incontact with the ground=10m2(g =10m2)
Cruz
P=F/A
Mira
can someone derive the formula a little bit deeper?
Bern
what is coplanar force?
OLADITI Reply
what is accuracy and precision
Peace Reply
How does a current follow?
Vineeta Reply
follow?
akif
which one dc or ac current.
akif
how does a current following?
Vineeta
?
akif
AC current
Vineeta
AC current follows due to changing electric field and magnetic field.
akif
you guys are just saying follow is flow not follow please
Abubakar
ok bro thanks
akif
flows
Abubakar
but i wanted to understand him/her in his own language
akif
but I think the statement is written in English not any other language
Abubakar
my mean that in which form he/she written this,will understand better in this form, i write.
akif
ok
Abubakar
ok thanks bro. my mistake
Vineeta
u are welcome
Abubakar
what is a semiconductor
Vineeta Reply
substances having lower forbidden gap between valence band and conduction band
akif
what is a conductor?
Vineeta
replace lower by higher only
akif
convert 56°c to kelvin
Abubakar
How does a current follow?
Vineeta
A semiconductor is any material whose conduction lies between that of a conductor and an insulator.
AKOWUAH
what is Atom? what is molecules? what is ions?
Abubakar Reply
What is a molecule
Samuel Reply
Is a unit of a compound that has two or more atoms either of the same or different atoms
Justice
A molecule is the smallest indivisible unit of a compound, Just like the atom is the smallest indivisible unit of an element.
Rachel
what is a molecule?
Vineeta
what is a vector
smith Reply
A quantity that has both a magnitude AND a direction. E.g velocity, acceleration, force are all vector quantities. Hope this helps :)
deage
what is the difference between velocity and relative velocity?
Mackson
Velocity is the rate of change of displacement with time. Relative velocity on the other hand is the velocity observed by an observer with respect to a reference point.
Chuks
what do u understand by Ultraviolet catastrophe?
Rufai
A certain freely falling object, released from rest, requires 1.5seconds to travel the last 30metres before it hits the ground. (a) Find the velocity of the object when it is 30metres above the ground.
Mackson
A vector is a quantity that has both magnitude and direction
Rufus
the velocity Is 20m/s-2
Rufus
derivation of electric potential
Rugunda Reply
V = Er = (kq/r^2)×r V = kq/r Where V: electric potential.
Chuks
what is the difference between simple motion and simple harmonic motion ?
syed
hi
Peace
hi
Rufus
hi
Chip
simple harmonic motion is a motion of tro and fro of simple pendulum and the likes while simple motion is a linear motion on a straight line.
Muinat
a body acceleration uniform from rest a 6m/s -2 for 8sec and decelerate uniformly to rest in the next 5sec,the magnitude of the deceleration is ?
Patricia Reply
The wording not very clear kindly
Moses
6
Leo
9.6m/s2
Jolly
the magnitude of deceleration =-9.8ms-2. first find the final velocity using the known acceleration and time. next use the calculated velocity to find the size of deceleration.
Mackson
wrong
Peace
-3.4m/s-2
Justice
Hi
Abj
Firstly, calculate final velocity of the body and then the deceleration. The final ans is,-9.6ms-2
Muinat
8x6= 48m/-2 use v=u + at 48÷5=9.6
Lawrence
can i define motion like this motion can be define as the continuous change of an object or position
Shuaib Reply
Any object in motion will come to rest after a time duration. Different objects may cover equal distance in different time duration. Therefore, motion is defined as a change in position depending on time.
Chuks
Practice Key Terms 2

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask