<< Chapter < Page Chapter >> Page >
  • Sketch voltage and current versus time in simple inductive, capacitive, and resistive circuits.
  • Calculate inductive and capacitive reactance.
  • Calculate current and/or voltage in simple inductive, capacitive, and resistive circuits.

Many circuits also contain capacitors and inductors, in addition to resistors and an AC voltage source. We have seen how capacitors and inductors respond to DC voltage when it is switched on and off. We will now explore how inductors and capacitors react to sinusoidal AC voltage.

Inductors and inductive reactance

Suppose an inductor is connected directly to an AC voltage source, as shown in [link] . It is reasonable to assume negligible resistance, since in practice we can make the resistance of an inductor so small that it has a negligible effect on the circuit. Also shown is a graph of voltage and current as functions of time.

Part a of the figure describes an A C voltage source V connected across an inductor L. The voltage across the inductance is shown as V L. Part b of the figure describes a graph showing the variation of current and voltage across the inductance as a function of time. The voltage V L and current I L is plotted along the Y axis and the time t is along the X axis. The graph for current is a progressive sine wave from the origin. The graph for voltage V is a cosine wave and an amplitude slightly less than the current wave.
(a) An AC voltage source in series with an inductor having negligible resistance. (b) Graph of current and voltage across the inductor as functions of time.

The graph in [link] (b) starts with voltage at a maximum. Note that the current starts at zero and rises to its peak after the voltage that drives it, just as was the case when DC voltage was switched on in the preceding section. When the voltage becomes negative at point a, the current begins to decrease; it becomes zero at point b, where voltage is its most negative. The current then becomes negative, again following the voltage. The voltage becomes positive at point c and begins to make the current less negative. At point d, the current goes through zero just as the voltage reaches its positive peak to start another cycle. This behavior is summarized as follows:

Ac voltage in an inductor

When a sinusoidal voltage is applied to an inductor, the voltage leads the current by one-fourth of a cycle, or by a 90º phase angle.

Current lags behind voltage, since inductors oppose change in current. Changing current induces a back emf V = L ( Δ I / Δ t ) size 12{V= - L \( ΔI/Δt \) } {} . This is considered to be an effective resistance of the inductor to AC. The rms current I size 12{I} {} through an inductor L size 12{L} {} is given by a version of Ohm’s law:

I = V X L , size 12{I= { {V} over {X rSub { size 8{L} } } } } {}

where V is the rms voltage across the inductor and X L size 12{X rSub { size 8{L} } } {} is defined to be

X L = fL , size 12{X rSub { size 8{L} } =2π ital "fL"} {}

with f size 12{f} {} the frequency of the AC voltage source in hertz (An analysis of the circuit using Kirchhoff’s loop rule and calculus actually produces this expression). X L size 12{X rSub { size 8{L} } } {} is called the inductive reactance    , because the inductor reacts to impede the current. X L size 12{X rSub { size 8{L} } } {} has units of ohms ( 1 H = 1 Ω s , so that frequency times inductance has units of ( cycles/s ) ( Ω s ) = Ω size 12{ \( "cycles/s" \) \( ` %OMEGA cdot s \) = %OMEGA } {} ), consistent with its role as an effective resistance. It makes sense that X L size 12{X rSub { size 8{L} } } {} is proportional to L size 12{L} {} , since the greater the induction the greater its resistance to change. It is also reasonable that X L size 12{X rSub { size 8{L} } } {} is proportional to frequency f size 12{f} {} , since greater frequency means greater change in current. That is, Δ I t size 12{ΔI} {} is large for large frequencies (large f size 12{f} {} , small Δ t size 12{Δt} {} ). The greater the change, the greater the opposition of an inductor.

Calculating inductive reactance and then current

(a) Calculate the inductive reactance of a 3.00 mH inductor when 60.0 Hz and 10.0 kHz AC voltages are applied. (b) What is the rms current at each frequency if the applied rms voltage is 120 V?

Strategy

The inductive reactance is found directly from the expression X L = fL size 12{X rSub { size 8{L} } =2π ital "fL"} {} . Once X L size 12{X rSub { size 8{L} } } {} has been found at each frequency, Ohm’s law as stated in the Equation I = V / X L size 12{I=V/X rSub { size 8{L} } } {} can be used to find the current at each frequency.

Solution for (a)

Entering the frequency and inductance into Equation X L = fL size 12{X rSub { size 8{L} } =2π ital "fL"} {} gives

X L = fL = 6.28 ( 60.0 / s ) ( 3.00 mH ) = 1.13 Ω at 60 Hz .

Similarly, at 10 kHz,

X L = fL = 6 . 28 ( 1.00 × 10 4 /s ) ( 3 . 00 mH ) = 188 Ω at 10 kHz . size 12{X rSub { size 8{L} } =2π ital "fL"=6 "." "28" \( 3 "." "00"" mH" \) ="188" %OMEGA } {}

Solution for (b)

The rms current is now found using the version of Ohm’s law in Equation I = V / X L size 12{I=V/X rSub { size 8{L} } } {} , given the applied rms voltage is 120 V. For the first frequency, this yields

I = V X L = 120 V 1.13 Ω = 106 A at 60 Hz .

Similarly, at 10 kHz,

I = V X L = 120 V 188 Ω = 0.637 A at 10 kHz . size 12{I= { {V} over {X rSub { size 8{L} } } } = { {"120"" V"} over {"188 " %OMEGA } } =0 "." "637"" A"} {}

Discussion

The inductor reacts very differently at the two different frequencies. At the higher frequency, its reactance is large and the current is small, consistent with how an inductor impedes rapid change. Thus high frequencies are impeded the most. Inductors can be used to filter out high frequencies; for example, a large inductor can be put in series with a sound reproduction system or in series with your home computer to reduce high-frequency sound output from your speakers or high-frequency power spikes into your computer.

Got questions? Get instant answers now!

Questions & Answers

Michelson Morley experiment
Riya Reply
***kidsgetmoney.co/share/Certified1 Is it true?
Eklu Reply
Calculate the final velocity attained, when a ball is given a velocity of 2.5m/s, acceleration of 0.67m/s² and reaches its point in 10s. Good luck!!!
Eklu Reply
2.68m/s
Doc
vf=vi+at vf=2.5+ 0.67*10 vf= 2.5 + 6.7 vf = 9.2
babar
s = vi t +1/2at sq s=58.5 s=v av X t vf= 9.2
babar
how 2.68
babar
v=u+at where v=final velocity u=initial velocity a=acceleration t=time
Eklu
***kidsgetmoney.co/share/Certified1 check and see
Eklu
express your height in Cm
Emmanuel Reply
my project is Sol gel process how to prepare this process pls tell me
Bala
the dimension of work and energy is ML2T2 find the unit of work and energy hence drive for work?
Emmanuel Reply
KgM2S2
Acquah
Two bodies P and Quarter each of mass 1000g. Moved in the same direction with speed of 10m/s and 20m/s respectively. Calculate the impulse of P and Q obeying newton's 3rd law of motion
Shimolla Reply
kk
Doc
definition for wave?
Doc Reply
A disturbance that travel from one medium to another and without causing permanent change to its displacement
Fagbenro
In physics, a wave is a disturbance that transfers energy through matter or space, with little or no associated mass transport (Mass transfer). ... There are two main types ofwaves: mechanical and electromagnetic. Mechanicalwaves propagate through a physical matter, whose substance is being deformed
Devansh
K
Manyo
thanks jare
Doc
Thanks
AMADI
Note: LINEAR MOMENTUM Linear momentum is defined as the product of a system’s mass multiplied by its velocity: size 12{p=mv} {}
AMADI
what is physic
zalmia Reply
please gave me answar
zalmia
Study of matter and energy
Fagbenro
physics is the science of matter and energy and their interactions
Acquah
physics is the technology behind air and matter
Doc
Okay
William
hi sir
Bala
how easy to understanding physics sir
Bala
Easy to learn
William
31. Calculate the initial (from rest) acceleration of a proton in a 5.00×106 N/C electric field (such as created by a research Van de Graaff). Explicitly show how you follow the steps in the Problem-Solving Strategy for electrostatics.
Catina Reply
A tennis ball is projected at an angle and attains a range of 78. if the velocity is 30metres per second, calculate the angle
Shimolla
what friction
Wisdom Reply
question on friction
Wisdom
the rubbing of one object or surface against another.
author
momentum is the product of mass and it's velocity.
Algayawi
what are bioelements?
Edina
Friction is a force that exist between two objects in contact. e.g. friction between road and car tires.
Eklu
Hi am new
Oharisi
With regards to a shielded cable, is there an induced current on the shield when the center conductor is carrying an AC Current? What is the formula?
John Reply
what is phenomena
remilekun Reply
no idea
Awoke
its phenomenon, an observable fact.
author
Mujy achy marks hasil krny k leay kesy tayari krni ho ge?plz help me I'M sooo woried
Imran Reply
konsi university m ho and konsa course h
Mohit
what is force
Chukwuemeka Reply
Force is the cause and momentum is its effect.
Salman
A force is a pull or a push on an object, causing an object to move or a moving object to stop.
Eklu
Find the velocity that make one full oscillation in 10 seconds and also makes 1.7meters in the same time
Prince Reply
yes
Rafael
OK
Oluwaseun
17m/s
Eklu
17m/s
Gabriel
0.17
Devansh
17m/s
Harrison
how did you solve it
Acquah
t=10s a=1.7m v=? u=0 but v=u+at but u=0 v=at 1.7×10=17 v=17m/s that's how I solved it.
Eklu
kk
Acquah
How is a=1.7m?
El
a is an acceleration
El
eklu..... I respect u....
Doc
its relating to time and oscillation made.
Eklu
You mean A as an amplitude?
El
ok
Emmanuel
Practice Key Terms 2

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask