<< Chapter < Page Chapter >> Page >
  • Describe the effects of the magnetic force between two conductors.
  • Calculate the force between two parallel conductors.

You might expect that there are significant forces between current-carrying wires, since ordinary currents produce significant magnetic fields and these fields exert significant forces on ordinary currents. But you might not expect that the force between wires is used to define the ampere. It might also surprise you to learn that this force has something to do with why large circuit breakers burn up when they attempt to interrupt large currents.

The force between two long straight and parallel conductors separated by a distance r size 12{r} {} can be found by applying what we have developed in preceding sections. [link] shows the wires, their currents, the fields they create, and the subsequent forces they exert on one another. Let us consider the field produced by wire 1 and the force it exerts on wire 2 (call the force F 2 size 12{F rSub { size 8{2} } } {} ). The field due to I 1 size 12{I rSub { size 8{1} } } {} at a distance r size 12{r} {} is given to be

B 1 = μ 0 I 1 2 πr . size 12{B rSub { size 8{1} } = { {μ rSub { size 8{0} } I rSub { size 8{1} } } over {2πr} } "." } {}
Figure a shows two parallel wires, both with currents going up. The magnetic field lines of the first wire are shown as concentric circles centered on wire 1 and in a plane perpendicular to the wires. The magnetic field is in the counter clockwise direction as viewed from above. Figure b shows a view from above and shows the current-carrying wires as two dots. Around wire one is a circle that represents a magnetic field line due to that wire. The magnetic field passes directly through wire two. The magnetic field is in the counter clockwise direction. The force on wire two is to the left, toward wire one.
(a) The magnetic field produced by a long straight conductor is perpendicular to a parallel conductor, as indicated by RHR-2. (b) A view from above of the two wires shown in (a), with one magnetic field line shown for each wire. RHR-1 shows that the force between the parallel conductors is attractive when the currents are in the same direction. A similar analysis shows that the force is repulsive between currents in opposite directions.

This field is uniform along wire 2 and perpendicular to it, and so the force F 2 size 12{F rSub { size 8{2} } } {} it exerts on wire 2 is given by F = IlB sin θ size 12{F= ital "IlB""sin"θ} {} with sin θ = 1 size 12{"sin"θ=1} {} :

F 2 = I 2 lB 1 . size 12{F rSub { size 8{2} } =I rSub { size 8{2} } ital "lB" rSub { size 8{1} } } {}

By Newton’s third law, the forces on the wires are equal in magnitude, and so we just write F size 12{F} {} for the magnitude of F 2 size 12{F rSub { size 8{2} } } {} . (Note that F 1 = F 2 size 12{F rSub { size 8{1} } = - F rSub { size 8{2} } } {} .) Since the wires are very long, it is convenient to think in terms of F / l size 12{F/l} {} , the force per unit length. Substituting the expression for B 1 size 12{B rSub { size 8{1} } } {} into the last equation and rearranging terms gives

F l = μ 0 I 1 I 2 2 πr . size 12{ { {F} over {l} } = { {μ rSub { size 8{0} } I rSub { size 8{1} } I rSub { size 8{2} } } over {2πr} } "." } {}

F / l size 12{F/l} {} is the force per unit length between two parallel currents I 1 size 12{I rSub { size 8{1} } } {} and I 2 size 12{I rSub { size 8{2} } } {} separated by a distance r size 12{r} {} . The force is attractive if the currents are in the same direction and repulsive if they are in opposite directions.

This force is responsible for the pinch effect in electric arcs and plasmas. The force exists whether the currents are in wires or not. In an electric arc, where currents are moving parallel to one another, there is an attraction that squeezes currents into a smaller tube. In large circuit breakers, like those used in neighborhood power distribution systems, the pinch effect can concentrate an arc between plates of a switch trying to break a large current, burn holes, and even ignite the equipment. Another example of the pinch effect is found in the solar plasma, where jets of ionized material, such as solar flares, are shaped by magnetic forces.

The operational definition of the ampere is based on the force between current-carrying wires. Note that for parallel wires separated by 1 meter with each carrying 1 ampere, the force per meter is

F l = × 10 7 T m/A 1 A 2 2 π 1 m = 2 × 10 7 N/m. size 12{ { {F} over {l} } = { { left (4π times "10" rSup { size 8{ - 7} } `T cdot "m/A" right ) left (1`A right ) rSup { size 8{2} } } over { left (2π right ) left (1" m" right )} } =2 times "10" rSup { size 8{ - 7} } " N/m" "." } {}

Questions & Answers

derivative of first differential equation
Haruna Reply
why static friction is greater than Kinetic friction
Ali Reply
draw magnetic field pattern for two wire carrying current in the same direction
Ven Reply
An American traveler in New Zealand carries a transformer to convert New Zealand’s standard 240 V to 120 V so that she can use some small appliances on her trip.
nkombo Reply
What is the ratio of turns in the primary and secondary coils of her transformer?
nkombo
How electric lines and equipotential surface are mutually perpendicular?
Abid Reply
The potential difference between any two points on the surface is zero that implies È.Ŕ=0, Where R is the distance between two different points &E= Electric field intensity. From which we have cos þ =0, where þ is the angle between the directions of field and distance line, as E andR are zero. Thus
MAHADEV
sorry..E and R are non zero...
MAHADEV
By how much leeway (both percentage and mass) would you have in the selection of the mass of the object in the previous problem if you did not wish the new period to be greater than 2.01 s or less than 1.99 s?
Elene Reply
what Is linear momentum
Victoria Reply
why no diagrams
Blessing Reply
where
Fayyaz
Myanmar
Pyae
hi
Iroko
hello
Abdu
Describe an experiment to determine short half life
Tyson Reply
what is science
Kenedy Reply
it's a natural phenomena
Hassan
sap
Emmanuel
please can someone help me with explanations of wave
Benedine
there are seven basic type of wave radio waves, gyamma rays (nuclear energy), microwave,etc you can also search 🔍 on Google :-)
Shravasti
A 20MH coil has a resistance of 50 ohms and us connected in series with a capacitor to a 520MV supply
Musa Reply
what is physics
Caya Reply
it is the science which we used in our daily life
Sujitha
Physics is the branch of science that deals with the study of matter and the interactions it undergoes with energy
Junior
it is branch of science which deals with study of happening in the human life
AMIT
A 20MH coil has a resistance of 50 ohms and is connected in series with a capacitor to a 250MV supply if the circuit is to resonate at 100KHZ, Determine 1: the capacitance of the capacitor 2: the working voltage of the circuit, given that pie =3.142
Musa
Physics is the branch of science that deals with the study of matter and the interactions it undergoes with energy
Kelly
Heat is transfered by thermal contact but if it is transfered by conduction or radiation, is it possible to reach in thermal equilibrium?
Eden Reply
Yes, It is possible by conduction if Surface is Adiabatic
Astronomy
Yeah true ilwith d help of Adiabatic
Kelly
what are the fundamentals qualities
Magret Reply
what is physic3
Kalilu
what is physic
Kalilu
Physics? Is a branch of science dealing with matter in relation to energy.
Moses
Physic... Is a purging medicine, which stimulates evacuation of the bowels.
Moses
are you asking for qualities or quantities?
Noman
fundamental quantities are, length , mass, time, current, luminous intensity, amount of substance, thermodynamic temperature.
Shravasti
fundamental quantities are quantities that are independent of others and cannot be define in terms of other quantities there is nothing like Qualities we have only fundamental quantities which includes; length,mass,time, electric current, luminous density, temperature, amount of substance etc
Gift
give examples of three dimensional frame of reference
Ekwunazor Reply
Universe
Noman
Yes the Universe itself
Astronomy

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask