Make certain there is a clear circuit diagram on which you can label all known and unknown resistances, emfs, and currents. If a current is unknown, you must assign it a direction. This is necessary for determining the signs of potential changes. If you assign the direction incorrectly, the current will be found to have a negative value—no harm done.
Apply the junction rule to any junction in the circuit. Each time the junction rule is applied, you should get an equation with a current that does not appear in a previous application—if not, then the equation is redundant.
Apply the loop rule to as many loops as needed to solve for the unknowns in the problem. (There must be as many independent equations as unknowns.) To apply the loop rule, you must choose a direction to go around the loop. Then carefully and consistently determine the signs of the potential changes for each element using the four bulleted points discussed above in conjunction with
[link] .
Solve the simultaneous equations for the unknowns. This may involve many algebraic steps, requiring careful checking and rechecking.
Check to see whether the answers are reasonable and consistent. The numbers should be of the correct order of magnitude, neither exceedingly large nor vanishingly small. The signs should be reasonable—for example, no resistance should be negative. Check to see that the values obtained satisfy the various equations obtained from applying the rules. The currents should satisfy the junction rule, for example.
The material in this section is correct in theory. We should be able to verify it by making measurements of current and voltage. In fact, some of the devices used to make such measurements are straightforward applications of the principles covered so far and are explored in the next modules. As we shall see, a very basic, even profound, fact results—making a measurement alters the quantity being measured.
Can Kirchhoff’s rules be applied to simple series and parallel circuits or are they restricted for use in more complicated circuits that are not combinations of series and parallel?
Kirchhoff's rules can be applied to any circuit since they are applications to circuits of two conservation laws. Conservation laws are the most broadly applicable principles in physics. It is usually mathematically simpler to use the rules for series and parallel in simpler circuits so we emphasize Kirchhoff’s rules for use in more complicated situations. But the rules for series and parallel can be derived from Kirchhoff’s rules. Moreover, Kirchhoff’s rules can be expanded to devices other than resistors and emfs, such as capacitors, and are one of the basic analysis devices in circuit analysis.
Kirchhoff’s rules can be used to analyze any circuit, simple or complex.
Kirchhoff’s first rule—the junction rule: The sum of all currents entering a junction must equal the sum of all currents leaving the junction.
Kirchhoff’s second rule—the loop rule: The algebraic sum of changes in potential around any closed circuit path (loop) must be zero.
The two rules are based, respectively, on the laws of conservation of charge and energy.
When calculating potential and current using Kirchhoff’s rules, a set of conventions must be followed for determining the correct signs of various terms.
The simpler series and parallel rules are special cases of Kirchhoff’s rules.
Conceptual questions
Can all of the currents going into the junction in
[link] be positive? Explain.
Apply the junction rule to junction b in
[link] . Is any new information gained by applying the junction rule at e? (In the figure, each emf is represented by script E.)
(a) What is the potential difference going from point a to point b in
[link] ? (b) What is the potential difference going from c to b? (c) From e to g? (d) From e to d?
Consider the circuit in
[link] , and suppose that the emfs are unknown and the currents are given to be
${I}_{1}=5\text{.}\text{00 A}$ ,
${I}_{2}=3\text{.0 A}$ , and
${I}_{3}=\mathrm{\u20132}\text{.}\text{00 A}$ . (a) Could you find the emfs? (b) What is wrong with the assumptions?
(a) No, you would get inconsistent equations to solve.
(b)
${I}_{1}\ne {I}_{2}+{I}_{3}$ . The assumed currents violate the junction rule.
Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0º20.0º with the horizontal. (See [link] .) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate an
static fiction is friction between two surfaces in contact an none of sliding over on another, while Kinetic friction is friction between sliding surfaces in contact.
MINDERIUM
I don't get it,if it's static then there will be no friction.
author
It means that static friction is that friction that most be overcome before a body can move
kingsley
static friction is a force that keeps an object from moving, and it's the opposite of kinetic friction.
author
It is a force a body must overcome in order for the body to move.
Eboh
If a particle accelerator explodes what happens
Eboh
why we see the edge effect in case of the field lines of capacitor?
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
Praise what level are you
yusuf
If u are doing a levels in your first year you do AS topics therefore you do 5 big topic i.e particles radiation, waves and optics, mechanics,materials, electricity. After that you do A level topics like Specific Harmonic motion circular motion astrophysics depends really
Anya
Yeah basics of physics prin8
yusuf
Heat nd Co for a level
yusuf
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
hallow
Boniface
please send the answer
Boniface
the range of objects and phenomena studied in physics is