<< Chapter < Page Chapter >> Page >

Calculating current: using kirchhoff’s rules

Find the currents flowing in the circuit in [link] .

The diagram shows a complex circuit with two voltage sources E sub one and E sub two and several resistive loads, wired in two loops and two junctions. Several points on the diagram are marked with letters a through h. The current in each branch is labeled separately.
This circuit is similar to that in [link] , but the resistances and emfs are specified. (Each emf is denoted by script E.) The currents in each branch are labeled and assumed to move in the directions shown. This example uses Kirchhoff’s rules to find the currents.

Strategy

This circuit is sufficiently complex that the currents cannot be found using Ohm’s law and the series-parallel techniques—it is necessary to use Kirchhoff’s rules. Currents have been labeled I 1 size 12{I rSub { size 8{1} } } {} , I 2 size 12{I rSub { size 8{2} } } {} , and I 3 size 12{I rSub { size 8{3} } } {} in the figure and assumptions have been made about their directions. Locations on the diagram have been labeled with letters a through h. In the solution we will apply the junction and loop rules, seeking three independent equations to allow us to solve for the three unknown currents.

Solution

We begin by applying Kirchhoff’s first or junction rule at point a. This gives

I 1 = I 2 + I 3 , size 12{I rSub { size 8{1} } =I rSub { size 8{2} } +I rSub { size 8{3} } } {}

since I 1 size 12{I rSub { size 8{1} } } {} flows into the junction, while I 2 size 12{I rSub { size 8{2} } } {} and I 3 size 12{I rSub { size 8{3} } } {} flow out. Applying the junction rule at e produces exactly the same equation, so that no new information is obtained. This is a single equation with three unknowns—three independent equations are needed, and so the loop rule must be applied.

Now we consider the loop abcdea. Going from a to b, we traverse R 2 size 12{R rSub { size 8{2} } } {} in the same (assumed) direction of the current I 2 size 12{I rSub { size 8{2} } } {} , and so the change in potential is I 2 R 2 size 12{ - I rSub { size 8{2} } R rSub { size 8{2} } } {} . Then going from b to c, we go from to +, so that the change in potential is + emf 1 size 12{+"emf" rSub { size 8{1} } } {} . Traversing the internal resistance r 1 size 12{r rSub { size 8{1} } } {} from c to d gives I 2 r 1 size 12{ - I rSub { size 8{2} } r rSub { size 8{1} } } {} . Completing the loop by going from d to a again traverses a resistor in the same direction as its current, giving a change in potential of I 1 R 1 size 12{ - I rSub { size 8{1} } R rSub { size 8{1} } } {} .

The loop rule states that the changes in potential sum to zero. Thus,

I 2 R 2 + emf 1 I 2 r 1 I 1 R 1 = I 2 ( R 2 + r 1 ) + emf 1 I 1 R 1 = 0 . size 12{ - I rSub { size 8{2} } R rSub { size 8{2} } +"emf" rSub { size 8{1} } - I rSub { size 8{2} } r rSub { size 8{1} } - I rSub { size 8{1} } R rSub { size 8{1} } = - I rSub { size 8{2} } \( R rSub { size 8{2} } +r rSub { size 8{1} } \) +"emf" rSub { size 8{1} } - I rSub { size 8{1} } R rSub { size 8{1} } =0} {}

Substituting values from the circuit diagram for the resistances and emf, and canceling the ampere unit gives

3 I 2 + 18 6 I 1 = 0 . size 12{ - 3I rSub { size 8{2} } +"18" - 6I rSub { size 8{1} } =0} {}

Now applying the loop rule to aefgha (we could have chosen abcdefgha as well) similarly gives

+ I 1 R 1 + I 3 R 3 + I 3 r 2 emf 2 = + I 1 R 1 + I 3 R 3 + r 2 emf 2 = 0 . size 12{+I rSub { size 8{1} } R rSub { size 8{1} } +I rSub { size 8{3} } R rSub { size 8{3} } +I rSub { size 8{3} } r rSub { size 8{2} } - "emf" rSub { size 8{2} } "=+"I rSub { size 8{1} } R rSub { size 8{1} } +I rSub { size 8{3} } left (R rSub { size 8{3} } +r rSub { size 8{2} } right ) - "emf" rSub { size 8{2} } =0} {}

Note that the signs are reversed compared with the other loop, because elements are traversed in the opposite direction. With values entered, this becomes

+ 6 I 1 + 2 I 3 45 = 0 . size 12{+6I rSub { size 8{1} } +2I rSub { size 8{3} } - "45"=0} {}

These three equations are sufficient to solve for the three unknown currents. First, solve the second equation for I 2 size 12{I rSub { size 8{2} } } {} :

I 2 = 6 2 I 1 . size 12{I rSub { size 8{2} } =6 - 2I rSub { size 8{1} } } {}

Now solve the third equation for I 3 size 12{I rSub { size 8{3} } } {} :

I 3 = 22 . 5 3 I 1 . size 12{I rSub { size 8{3} } ="22" "." 5 - 3I rSub { size 8{1} } } {}

Substituting these two new equations into the first one allows us to find a value for I 1 size 12{I rSub { size 8{1} } } {} :

I 1 = I 2 + I 3 = ( 6 2 I 1 ) + ( 22 . 5 3 I 1 ) = 28 . 5 5 I 1 . size 12{I rSub { size 8{1} } =I rSub { size 8{2} } +I rSub { size 8{3} } = \( 6 - 2I rSub { size 8{1} } \) + \( "22" "." 5 - 3I rSub { size 8{1} } \) ="28" "." 5 - 5I rSub { size 8{1} } } {}

Combining terms gives

6 I 1 = 28 . 5, and size 12{6I rSub { size 8{1} } ="28" "." 5} {}
I 1 = 4 . 75 A . size 12{I rSub { size 8{1} } =4 "." "75"" A"} {}

Substituting this value for I 1 size 12{I rSub { size 8{1} } } {} back into the fourth equation gives

I 2 = 6 2 I 1 = 6 9.50 size 12{I rSub { size 8{2} } =6 - 2I rSub { size 8{1} } =6 - 9 "." "50"} {}
I 2 = 3 . 50 A . size 12{I rSub { size 8{2} } = - 3 "." "50"" A"} {}

The minus sign means I 2 size 12{I rSub { size 8{2} } } {} flows in the direction opposite to that assumed in [link] .

Finally, substituting the value for I 1 size 12{I rSub { size 8{1} } } {} into the fifth equation gives

I 3 = 22.5 3 I 1 = 22.5 14 . 25 size 12{I rSub { size 8{3} } ="22" "." 5 - 3I rSub { size 8{1} } ="22" "." 5 - "14" "." "25"} {}
I 3 = 8 . 25 A . size 12{I rSub { size 8{3} } =8 "." "25"" A"} {}

Discussion

Just as a check, we note that indeed I 1 = I 2 + I 3 size 12{I rSub { size 8{1} } =I rSub { size 8{2} } +I rSub { size 8{3} } } {} . The results could also have been checked by entering all of the values into the equation for the abcdefgha loop.

Questions & Answers

What is specific heat capacity?
hamidat Reply
Specific heat capacity is the amount of heat required to raise the temperature of one (Kg) of a substance through one Kelvin
Paluutar
formula for measuring Joules
Rowshan Reply
I don't understand, do you mean the S.I unit of work and energy?
hamidat
what are the effects of electric current
ADAMS Reply
What limits the Magnification of an optical instrument?
Naeem Reply
Lithography is 2 micron
Venkateshwarlu
what is expression for energy possessed by water ripple
Prabesh Reply
what is hydrolic press
Mark Reply
An hydraulic press is a type of machine that is operated by different pressure of water on pistons.
hamidat
what is dimensional unite of mah
Patrock Reply
i want jamb related question on this asap🙏
sharon Reply
What is Boyles law
Pascal Reply
it can simple defined as constant temperature
Muhammad
Boyles law states that the volume of a fixed amount of a gas is inversely proportional to the pressure acting on in provided that the temperature is constant.that is V=k(1/p) or V=k/p
FADILAT
what is motion
Mua Reply
getting notifications for a dictionary word, smh
Anderson
what is escape velocity
Shuaibu Reply
the minimum thrust that an object must have in oder yo escape the gravitational pull
Joshua
what is a dimer
Mua
what is a atom
ADAMS
how to calculate tension
Deena Reply
what are the laws of motion
Mua
what is force
Ugwu Reply
Force is any quantity or a change that produces motion on an object body.
albert
A force is a push or a pull that has the tendency of changing a body's uniform state of rest or uniform state of motion in a straight line.
nicholas
plsoo give me the gravitational motion formulas
Okoye
f=Gm/d²
FADILAT
What is the meaning of emf
Chinedu Reply
electro magnetic force
shafiu
Electromotive force (emf) is a measurement of the energy that causes current to flow through a circuit.
Darssini
tritium (gas, netrogen, cloud, lamp)
firdaus Reply
Continue - > tritium (gas, netrogen, cloud, lamp span, lamp light, cool)
firdaus
Practice Key Terms 4

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask