# 19.7 Energy stored in capacitors

 Page 1 / 3
• List some uses of capacitors.
• Express in equation form the energy stored in a capacitor.
• Explain the function of a defibrillator.

Most of us have seen dramatizations in which medical personnel use a defibrillator    to pass an electric current through a patient’s heart to get it to beat normally. (Review [link] .) Often realistic in detail, the person applying the shock directs another person to “make it 400 joules this time.” The energy delivered by the defibrillator is stored in a capacitor and can be adjusted to fit the situation. SI units of joules are often employed. Less dramatic is the use of capacitors in microelectronics, such as certain handheld calculators, to supply energy when batteries are charged. (See [link] .) Capacitors are also used to supply energy for flash lamps on cameras.

Energy stored in a capacitor is electrical potential energy, and it is thus related to the charge $Q$ and voltage $V$ on the capacitor. We must be careful when applying the equation for electrical potential energy $\text{Δ}\text{PE}=q\text{Δ}V\phantom{\rule{0.25em}{0ex}}$ to a capacitor. Remember that $\text{Δ}\text{PE}$ is the potential energy of a charge $q$ going through a voltage $\text{Δ}V$ . But the capacitor starts with zero voltage and gradually comes up to its full voltage as it is charged. The first charge placed on a capacitor experiences a change in voltage $\text{Δ}V=0$ , since the capacitor has zero voltage when uncharged. The final charge placed on a capacitor experiences $\text{Δ}V=V$ , since the capacitor now has its full voltage $V$ on it. The average voltage on the capacitor during the charging process is $V/2$ , and so the average voltage experienced by the full charge $q$ is $V/2$ . Thus the energy stored in a capacitor, ${E}_{\text{cap}}$ , is

${E}_{\text{cap}}=\frac{QV}{2},$

where $Q$ is the charge on a capacitor with a voltage $V$ applied. (Note that the energy is not $\text{QV}$ , but $\text{QV}/2$ .) Charge and voltage are related to the capacitance $C$ of a capacitor by $Q=\text{CV}$ , and so the expression for ${E}_{\text{cap}}$ can be algebraically manipulated into three equivalent expressions:

${E}_{\text{cap}}=\frac{\text{QV}}{2}=\frac{{\text{CV}}^{2}}{2}=\frac{{Q}^{2}}{2C},$

where $Q$ is the charge and $V$ the voltage on a capacitor $C$ . The energy is in joules for a charge in coulombs, voltage in volts, and capacitance in farads.

## Energy stored in capacitors

The energy stored in a capacitor can be expressed in three ways:

${E}_{\text{cap}}=\frac{\text{QV}}{2}=\frac{{\text{CV}}^{2}}{2}=\frac{{Q}^{2}}{2C},$

where $Q$ is the charge, $V$ is the voltage, and $C$ is the capacitance of the capacitor. The energy is in joules for a charge in coulombs, voltage in volts, and capacitance in farads.

In a defibrillator, the delivery of a large charge in a short burst to a set of paddles across a person’s chest can be a lifesaver. The person’s heart attack might have arisen from the onset of fast, irregular beating of the heart—cardiac or ventricular fibrillation. The application of a large shock of electrical energy can terminate the arrhythmia and allow the body’s pacemaker to resume normal patterns. Today it is common for ambulances to carry a defibrillator, which also uses an electrocardiogram to analyze the patient’s heartbeat pattern. Automated external defibrillators (AED) are found in many public places ( [link] ). These are designed to be used by lay persons. The device automatically diagnoses the patient’s heart condition and then applies the shock with appropriate energy and waveform. CPR is recommended in many cases before use of an AED.

what does the speedometer of a car measure ?
Car speedometer measures the rate of change of distance per unit time.
Moses
describe how a Michelson interferometer can be used to measure the index of refraction of a gas (including air)
using the law of reflection explain how powder takes the shine off a person's nose. what is the name of the optical effect?
WILLIAM
is higher resolution of microscope using red or blue light?.explain
WILLIAM
can sound wave in air be polarized?
Unlike transverse waves such as electromagnetic waves, longitudinal waves such as sound waves cannot be polarized. ... Since sound waves vibrate along their direction of propagation, they cannot be polarized
Astronomy
A proton moves at 7.50×107m/s perpendicular to a magnetic field. The field causes the proton to travel in a circular path of radius 0.800 m. What is the field strength?
derived dimenionsal formula
what is the difference between mass and weight
assume that a boy was born when his father was eighteen years.if the boy is thirteen years old now, how is his father in
Isru
what is airflow
derivative of first differential equation
why static friction is greater than Kinetic friction
draw magnetic field pattern for two wire carrying current in the same direction
An American traveler in New Zealand carries a transformer to convert New Zealand’s standard 240 V to 120 V so that she can use some small appliances on her trip.
What is the ratio of turns in the primary and secondary coils of her transformer?
nkombo
what is energy
Yusuf
How electric lines and equipotential surface are mutually perpendicular?
The potential difference between any two points on the surface is zero that implies È.Ŕ=0, Where R is the distance between two different points &E= Electric field intensity. From which we have cos þ =0, where þ is the angle between the directions of field and distance line, as E andR are zero. Thus
sorry..E and R are non zero...
By how much leeway (both percentage and mass) would you have in the selection of the mass of the object in the previous problem if you did not wish the new period to be greater than 2.01 s or less than 1.99 s?
hello
Chichi
Hi
Matthew
hello
Sujan
Hi I'm Matthew, and the answer is Lee weighs in mass 0.008kg OR 0.009kg
Matthew
14 year old answers college physics and the crowd goes wild!
Matthew
Hlo