<< Chapter < Page Chapter >> Page >

Note that the energies calculated in the previous example are absolute values. The change in potential energy for the battery is negative, since it loses energy. These batteries, like many electrical systems, actually move negative charge—electrons in particular. The batteries repel electrons from their negative terminals (A) through whatever circuitry is involved and attract them to their positive terminals (B) as shown in [link] . The change in potential is Δ V = V B –V A = +12 V and the charge q is negative, so that ΔPE = q Δ V is negative, meaning the potential energy of the battery has decreased when q has moved from A to B.

A headlight is connected to a 12 V battery. Negative charges move from the negative terminal of the battery to the positive terminal, resulting in a current flow and making the headlight glow. However, the positive terminal is at a greater potential than the negative terminal.
A battery moves negative charge from its negative terminal through a headlight to its positive terminal. Appropriate combinations of chemicals in the battery separate charges so that the negative terminal has an excess of negative charge, which is repelled by it and attracted to the excess positive charge on the other terminal. In terms of potential, the positive terminal is at a higher voltage than the negative. Inside the battery, both positive and negative charges move.

How many electrons move through a headlight each second?

When a 12.0 V car battery runs a single 30.0 W headlight, how many electrons pass through it each second?


To find the number of electrons, we must first find the charge that moved in 1.00 s. The charge moved is related to voltage and energy through the equation ΔPE = q Δ V . A 30.0 W lamp uses 30.0 joules per second. Since the battery loses energy, we have ΔPE = –30.0 J and, since the electrons are going from the negative terminal to the positive, we see that Δ V = +12.0 V .


To find the charge q size 12{q} {} moved, we solve the equation ΔPE = q Δ V :

q = ΔPE Δ V .

Entering the values for Δ PE size 12{?"PE"} {} and Δ V , we get

q = –30.0 J +12.0 V = –30.0 J +12.0 J/C = –2.50 C.

The number of electrons n e size 12{n rSub { size 8{e} } } {} is the total charge divided by the charge per electron. That is,

n e = –2.50 C –1.60 × 10 –19 C/e = 1.56 × 10 19 electrons.


This is a very large number. It is no wonder that we do not ordinarily observe individual electrons with so many being present in ordinary systems. In fact, electricity had been in use for many decades before it was determined that the moving charges in many circumstances were negative. Positive charge moving in the opposite direction of negative charge often produces identical effects; this makes it difficult to determine which is moving or whether both are moving.

Got questions? Get instant answers now!

The electron volt

The energy per electron is very small in macroscopic situations like that in the previous example—a tiny fraction of a joule. But on a submicroscopic scale, such energy per particle (electron, proton, or ion) can be of great importance. For example, even a tiny fraction of a joule can be great enough for these particles to destroy organic molecules and harm living tissue. The particle may do its damage by direct collision, or it may create harmful x rays, which can also inflict damage. It is useful to have an energy unit related to submicroscopic effects. [link] shows a situation related to the definition of such an energy unit. An electron is accelerated between two charged metal plates as it might be in an old-model television tube or oscilloscope. The electron is given kinetic energy that is later converted to another form—light in the television tube, for example. (Note that downhill for the electron is uphill for a positive charge.) Since energy is related to voltage by ΔPE = q Δ V , we can think of the joule as a coulomb-volt.

Questions & Answers

what is physics
Rhema Reply
a15kg powerexerted by the foresafter 3second
Firdos Reply
what is displacement
Xolani Reply
movement in a direction
Explain why magnetic damping might not be effective on an object made of several thin conducting layers separated by insulation? can someone please explain this i need it for my final exam
anas Reply
What is thê principle behind movement of thê taps control
Oluwakayode Reply
what is atomic mass
thomas Reply
this is the mass of an atom of an element in ratio with the mass of carbon-atom
show me how to get the accuracies of the values of the resistors for the two circuits i.e for series and parallel sides
Jesuovie Reply
Explain why it is difficult to have an ideal machine in real life situations.
Isaac Reply
tell me
what's the s . i unit for couple?
its s.i unit is Nm
Force×perpendicular distance N×m=Nm
İt iş diffucult to have idêal machine because of FRİCTİON definitely reduce thê efficiency
if the classica theory of specific heat is valid,what would be the thermal energy of one kmol of copper at the debye temperature (for copper is 340k)
Zaharadeen Reply
can i get all formulas of physics
BPH Reply
what affects fluid
Doreen Reply
Dimension for force MLT-2
Promise Reply
what is the dimensions of Force?
Osueke Reply
how do you calculate the 5% uncertainty of 4cm?
melia Reply
4cm/100×5= 0.2cm
how do you calculate the 5% absolute uncertainty of a 200g mass?
melia Reply
= 200g±(5%)10g
use the 10g as the uncertainty?
which topic u discussing about?
topic of question?
the relationship between the applied force and the deflection
sorry wrong question i meant the 5% uncertainty of 4cm?
its 0.2 cm or 2mm
thank you
Hello group...
well hello there
hi guys
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?