<< Chapter < Page Chapter >> Page >

We use electric field lines to visualize and analyze electric fields (the lines are a pictorial tool, not a physical entity in themselves). The properties of electric field lines for any charge distribution can be summarized as follows:

  1. Field lines must begin on positive charges and terminate on negative charges, or at infinity in the hypothetical case of isolated charges.
  2. The number of field lines leaving a positive charge or entering a negative charge is proportional to the magnitude of the charge.
  3. The strength of the field is proportional to the closeness of the field lines—more precisely, it is proportional to the number of lines per unit area perpendicular to the lines.
  4. The direction of the electric field is tangent to the field line at any point in space.
  5. Field lines can never cross.

The last property means that the field is unique at any point. The field line represents the direction of the field; so if they crossed, the field would have two directions at that location (an impossibility if the field is unique).

Phet explorations: charges and fields

Move point charges around on the playing field and then view the electric field, voltages, equipotential lines, and more. It's colorful, it's dynamic, it's free.

Charges and Fields

Section summary

  • Drawings of electric field lines are useful visual tools. The properties of electric field lines for any charge distribution are that:
  • Field lines must begin on positive charges and terminate on negative charges, or at infinity in the hypothetical case of isolated charges.
  • The number of field lines leaving a positive charge or entering a negative charge is proportional to the magnitude of the charge.
  • The strength of the field is proportional to the closeness of the field lines—more precisely, it is proportional to the number of lines per unit area perpendicular to the lines.
  • The direction of the electric field is tangent to the field line at any point in space.
  • Field lines can never cross.

Conceptual questions

Compare and contrast the Coulomb force field and the electric field. To do this, make a list of five properties for the Coulomb force field analogous to the five properties listed for electric field lines. Compare each item in your list of Coulomb force field properties with those of the electric field—are they the same or different? (For example, electric field lines cannot cross. Is the same true for Coulomb field lines?)

Got questions? Get instant answers now!

[link] shows an electric field extending over three regions, labeled I, II, and III. Answer the following questions. (a) Are there any isolated charges? If so, in what region and what are their signs? (b) Where is the field strongest? (c) Where is it weakest? (d) Where is the field the most uniform?

Five field lines represented by long arrows horizontally from left to right are shown. Two arrows diverge from other three, one arrow runs straight toward right and two arrows end abruptly.
Got questions? Get instant answers now!

Problem exercises

(a) Sketch the electric field lines near a point charge + q . (b) Do the same for a point charge –3.00 q .

Got questions? Get instant answers now!

Sketch the electric field lines a long distance from the charge distributions shown in [link] (a) and (b)

Got questions? Get instant answers now!

[link] shows the electric field lines near two charges q 1 size 12{q rSub { size 8{1} } } {} and q 2 size 12{q rSub { size 8{2} } } {} . What is the ratio of their magnitudes? (b) Sketch the electric field lines a long distance from the charges shown in the figure.

Field lines between a positive and a negative charge represented by curved lines is shown
The electric field near two charges.
Got questions? Get instant answers now!

Sketch the electric field lines in the vicinity of two opposite charges, where the negative charge is three times greater in magnitude than the positive. (See [link] for a similar situation).

Got questions? Get instant answers now!

Questions & Answers

find the density of a fluid in which a hydrometer having a density of 0.750g/mL floats with 92.0% of its volume submerged.
Neshrin Reply
Uniform speed
Sunday
(a)calculate the buoyant force on a 2.00-L Helium balloon.(b) given the mass of the rubber in the balloon is 1.50g. what is the vertical force on the balloon if it is let go? you can neglect the volume of the rubber.
Neshrin Reply
To Long
Usman
pleaseee. can you get the answer? I can wait till 12
Neshrin
a thick glass cup cracks when hot liquid is poured into it suddenly
Aiyelabegan Reply
because of the sudden contraction that takes place.
Eklu
railway crack has gap between the end of each length because?
Aiyelabegan Reply
For expansion
Eklu
yes
Aiyelabegan
Please i really find it dificult solving equations on physic, can anyone help me out?
Big Reply
sure
Carlee
what is the equation?
Carlee
Sure
Precious
fersnels biprism spectrometer how to determined
Bala Reply
how to study the hall effect to calculate the hall effect coefficient of the given semiconductor have to calculate the carrier density by carrier mobility.
Bala
what is the difference between atomic physics and momentum
Nana Reply
find the dimensional equation of work,power,and moment of a force show work?
Emmanuel Reply
What's sup guys
Peter
cul and you all
Okeh
cool you bro
Nana
so what is going on here
Nana
hello peeps
Joseph
Michelson Morley experiment
Riya Reply
how are you
Naveed
am good
Celine
you
Celine
hi
Bala
Hi
Ahmed
Calculate the final velocity attained, when a ball is given a velocity of 2.5m/s, acceleration of 0.67m/s² and reaches its point in 10s. Good luck!!!
Eklu Reply
2.68m/s
Doc
vf=vi+at vf=2.5+ 0.67*10 vf= 2.5 + 6.7 vf = 9.2
babar
s = vi t +1/2at sq s=58.5 s=v av X t vf= 9.2
babar
how 2.68
babar
v=u+at where v=final velocity u=initial velocity a=acceleration t=time
Eklu
the answer is 9.2m/s
OBERT
express your height in Cm
Emmanuel Reply
my project is Sol gel process how to prepare this process pls tell me
Bala
the dimension of work and energy is ML2T2 find the unit of work and energy hence drive for work?
Emmanuel Reply
KgM2S2
Acquah
Two bodies P and Quarter each of mass 1000g. Moved in the same direction with speed of 10m/s and 20m/s respectively. Calculate the impulse of P and Q obeying newton's 3rd law of motion
Shimolla Reply
kk
Doc
the answer is 0.03n according to the 3rd law of motion if the are in same direction meaning they interact each other.
OBERT
definition for wave?
Doc Reply
A disturbance that travel from one medium to another and without causing permanent change to its displacement
Fagbenro
In physics, a wave is a disturbance that transfers energy through matter or space, with little or no associated mass transport (Mass transfer). ... There are two main types ofwaves: mechanical and electromagnetic. Mechanicalwaves propagate through a physical matter, whose substance is being deformed
Devansh
K
Manyo
thanks jare
Doc
Thanks
AMADI
Note: LINEAR MOMENTUM Linear momentum is defined as the product of a system’s mass multiplied by its velocity: size 12{p=mv} {}
AMADI
what is physic
zalmia Reply
please gave me answar
zalmia
Study of matter and energy
Fagbenro
physics is the science of matter and energy and their interactions
Acquah
physics is the technology behind air and matter
Doc
Okay
William
hi sir
Bala
how easy to understanding physics sir
Bala
Easy to learn
William
Practice Key Terms 4

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask