The electric field is thus seen to depend only on the charge
$Q$ and the distance
$r$ ; it is completely independent of the test charge
$q$ .
Calculating the electric field of a point charge
Calculate the strength and direction of the electric field
$E$ due to a point charge of 2.00 nC (nano-Coulombs) at a distance of 5.00 mm from the charge.
Strategy
We can find the electric field created by a point charge by using the equation
$E=\text{kQ}/{r}^{2}$ .
Solution
Here
$Q=2\text{.}\text{00}\times {\text{10}}^{-9}$ C and
$r=5\text{.}\text{00}\times {\text{10}}^{-3}$ m. Entering those values into the above equation gives
This
electric field strength is the same at any point 5.00 mm away from the charge
$Q$ that creates the field. It is positive, meaning that it has a direction pointing away from the charge
$Q$ .
Calculating the force exerted on a point charge by an electric field
What force does the electric field found in the previous example exert on a point charge of
$\mathrm{\u20130.250}\phantom{\rule{0.25em}{0ex}}\mu \text{C}$ ?
Strategy
Since we know the electric field strength and the charge in the field, the force on that charge can be calculated using the definition of electric field
$\mathbf{\text{E}}=\mathbf{\text{F}}/q$ rearranged to
$\mathbf{\text{F}}=q\mathbf{\text{E}}$ .
Solution
The magnitude of the force on a charge
$q=-0\text{.}\text{250}\phantom{\rule{0.25em}{0ex}}\text{\mu C}$ exerted by a field of strength
$E=7\text{.}\text{20}\times {\text{10}}^{5}$ N/C is thus,
Because
$q$ is negative, the force is directed opposite to the direction of the field.
Discussion
The force is attractive, as expected for unlike charges. (The field was created by a positive charge and here acts on a negative charge.) The charges in this example are typical of common static electricity, and the modest attractive force obtained is similar to forces experienced in static cling and similar situations.
Play ball! Add charges to the Field of Dreams and see how they react to the electric field. Turn on a background electric field and adjust the direction and magnitude.
Section summary
The electrostatic force field surrounding a charged object extends out into space in all directions.
The electrostatic force exerted by a point charge on a test charge at a distance
$r$ depends on the charge of both charges, as well as the distance between the two.
The electric field
$\mathbf{\text{E}}$ is defined to be
$\mathbf{\text{E}}=\frac{\mathbf{\text{F}}}{q,}$
where
$\mathbf{\text{F}}$ is the Coulomb or electrostatic force exerted on a small positive test charge
$q$ .
$\mathbf{\text{E}}$ has units of N/C.
The magnitude of the electric field
$\mathbf{\text{E}}$ created by a point charge
$Q$ is
What is the magnitude and direction of an electric field that exerts a
$2\text{.}\text{00}\times {\text{10}}^{-5}\phantom{\rule{0.25em}{0ex}}\text{N}$ upward force on a
$\mathrm{\u20131.75}\phantom{\rule{0.25em}{0ex}}\mu \text{C}$ charge?
What is the magnitude and direction of the force exerted on a
$3.50\phantom{\rule{0.25em}{0ex}}\mu \text{C}$ charge by a 250 N/C electric field that points due east?
Calculate the initial (from rest) acceleration of a proton in a
$5\text{.}\text{00}\times {\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}\text{N/C}$ electric field (such as created by a research Van de Graaff). Explicitly show how you follow the steps in the Problem-Solving Strategy for electrostatics.
(a) Find the direction and magnitude of an electric field that exerts a
$4\text{.}\text{80}\times {\text{10}}^{-\text{17}}\phantom{\rule{0.25em}{0ex}}\text{N}$ westward force on an electron. (b) What magnitude and direction force does this field exert on a proton?
Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0º20.0º with the horizontal. (See [link] .) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate an
static fiction is friction between two surfaces in contact an none of sliding over on another, while Kinetic friction is friction between sliding surfaces in contact.
MINDERIUM
I don't get it,if it's static then there will be no friction.
author
It means that static friction is that friction that most be overcome before a body can move
kingsley
static friction is a force that keeps an object from moving, and it's the opposite of kinetic friction.
author
It is a force a body must overcome in order for the body to move.
Eboh
If a particle accelerator explodes what happens
Eboh
why we see the edge effect in case of the field lines of capacitor?
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
Praise what level are you
yusuf
If u are doing a levels in your first year you do AS topics therefore you do 5 big topic i.e particles radiation, waves and optics, mechanics,materials, electricity. After that you do A level topics like Specific Harmonic motion circular motion astrophysics depends really
Anya
Yeah basics of physics prin8
yusuf
Heat nd Co for a level
yusuf
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
hallow
Boniface
please send the answer
Boniface
the range of objects and phenomena studied in physics is