<< Chapter < Page Chapter >> Page >

No charge is actually created or destroyed when charges are separated as we have been discussing. Rather, existing charges are moved about. In fact, in all situations the total amount of charge is always constant. This universally obeyed law of nature is called the law of conservation of charge    .

Law of conservation of charge

Total charge is constant in any process.

In more exotic situations, such as in particle accelerators, mass, Δ m size 12{Δm} {} , can be created from energy in the amount Δ m = E c 2 size 12{Δm= { {E} over {c rSup { size 8{2} } } } } {} . Sometimes, the created mass is charged, such as when an electron is created. Whenever a charged particle is created, another having an opposite charge is always created along with it, so that the total charge created is zero. Usually, the two particles are “matter-antimatter” counterparts. For example, an antielectron would usually be created at the same time as an electron. The antielectron has a positive charge (it is called a positron), and so the total charge created is zero. (See [link] .) All particles have antimatter counterparts with opposite signs. When matter and antimatter counterparts are brought together, they completely annihilate one another. By annihilate, we mean that the mass of the two particles is converted to energy E , again obeying the relationship Δ m = E c 2 size 12{Δm= { {E} over {c rSup { size 8{2} } } } } {} . Since the two particles have equal and opposite charge, the total charge is zero before and after the annihilation; thus, total charge is conserved.

Making connections: conservation laws

Only a limited number of physical quantities are universally conserved. Charge is one—energy, momentum, and angular momentum are others. Because they are conserved, these physical quantities are used to explain more phenomena and form more connections than other, less basic quantities. We find that conserved quantities give us great insight into the rules followed by nature and hints to the organization of nature. Discoveries of conservation laws have led to further discoveries, such as the weak nuclear force and the quark substructure of protons and other particles.

Here energy is shown by a vector. Initially electrostatic charge q tot is equal to zero. Now energy gets converted into matter and creates one electron and antielectron pair but final electrostatic charge is equal to zero so change in mass delta m is equal to two m e, which is equal to E divided by c square. (b) In this figure, Electron and antielectron are colliding with each other. The electrostatic charge q tot before collision is zero and after collision it will remain zero.
(a) When enough energy is present, it can be converted into matter. Here the matter created is an electron–antielectron pair. ( m e size 12{m rSub { size 8{e} } } {} is the electron’s mass.) The total charge before and after this event is zero. (b) When matter and antimatter collide, they annihilate each other; the total charge is conserved at zero before and after the annihilation.

The law of conservation of charge is absolute—it has never been observed to be violated. Charge, then, is a special physical quantity, joining a very short list of other quantities in nature that are always conserved. Other conserved quantities include energy, momentum, and angular momentum.

Phet explorations: balloons and static electricity

Why does a balloon stick to your sweater? Rub a balloon on a sweater, then let go of the balloon and it flies over and sticks to the sweater. View the charges in the sweater, balloons, and the wall.

Balloons and Static Electricity

Section summary

  • There are only two types of charge, which we call positive and negative.
  • Like charges repel, unlike charges attract, and the force between charges decreases with the square of the distance.
  • The vast majority of positive charge in nature is carried by protons, while the vast majority of negative charge is carried by electrons.
  • The electric charge of one electron is equal in magnitude and opposite in sign to the charge of one proton.
  • An ion is an atom or molecule that has nonzero total charge due to having unequal numbers of electrons and protons.
  • The SI unit for charge is the coulomb (C), with protons and electrons having charges of opposite sign but equal magnitude; the magnitude of this basic charge q e size 12{ lline q rSub { size 8{e} } rline} {} is
    q e = 1.60 × 10 19 C . size 12{ lline q rSub { size 8{e} } rline =1 "." "60" times "10" rSup { size 8{ - "19"} } C} {}
  • Whenever charge is created or destroyed, equal amounts of positive and negative are involved.
  • Most often, existing charges are separated from neutral objects to obtain some net charge.
  • Both positive and negative charges exist in neutral objects and can be separated by rubbing one object with another. For macroscopic objects, negatively charged means an excess of electrons and positively charged means a depletion of electrons.
  • The law of conservation of charge ensures that whenever a charge is created, an equal charge of the opposite sign is created at the same time.

Conceptual questions

There are very large numbers of charged particles in most objects. Why, then, don’t most objects exhibit static electricity?

Got questions? Get instant answers now!

Why do most objects tend to contain nearly equal numbers of positive and negative charges?

Got questions? Get instant answers now!

Problems&Exercises

Common static electricity involves charges ranging from nanocoulombs to microcoulombs. (a) How many electrons are needed to form a charge of –2.00 nC (b) How many electrons must be removed from a neutral object to leave a net charge of 0.500 µ C ?

(a) 1.25 × 10 10

(b) 3.13 × 10 12

Got questions? Get instant answers now!

If 1 . 80 × 10 20 size 12{1 "." "80" times "10" rSup { size 8{"20"} } } {} electrons move through a pocket calculator during a full day’s operation, how many coulombs of charge moved through it?

Got questions? Get instant answers now!

To start a car engine, the car battery moves 3 . 75 × 10 21 size 12{3 "." "75" times "10" rSup { size 8{"21"} } } {} electrons through the starter motor. How many coulombs of charge were moved?

-600 C

Got questions? Get instant answers now!

A certain lightning bolt moves 40.0 C of charge. How many fundamental units of charge q e size 12{ lline q rSub { size 8{e} } rline} {} is this?

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask