<< Chapter < Page Chapter >> Page >
β dB = 10 log 10 I I 0 , size 12{β left ("dB" right )="10""log" rSub { size 8{"10"} } left ( { {I} over {I rSub { size 8{0} } } } right )} {}

where I 0 = 10 –12 W/m 2 size 12{I rSub { size 8{0} } ="10" rSup { size 8{ - "12"} } "W/m" rSup { size 8{2} } } {} is a reference intensity. In particular, I 0 size 12{I rSub { size 8{0} } } {} is the lowest or threshold intensity of sound a person with normal hearing can perceive at a frequency of 1000 Hz. Sound intensity level is not the same as intensity. Because β size 12{β} {} is defined in terms of a ratio, it is a unitless quantity telling you the level of the sound relative to a fixed standard ( 10 –12 W/m 2 size 12{"10" rSup { size 8{ - "12"} } "W/m" rSup { size 8{2} } } {} , in this case). The units of decibels (dB) are used to indicate this ratio is multiplied by 10 in its definition. The bel, upon which the decibel is based, is named for Alexander Graham Bell, the inventor of the telephone.

Sound intensity levels and intensities
Sound intensity level β (dB) Intensity I (W/m 2 ) Example/effect
0 1 × 10 –12 Threshold of hearing at 1000 Hz
10 1 × 10 –11 Rustle of leaves
20 1 × 10 –10 Whisper at 1 m distance
30 1 × 10 –9 Quiet home
40 1 × 10 –8 Average home
50 1 × 10 –7 Average office, soft music
60 1 × 10 –6 Normal conversation
70 1 × 10 –5 Noisy office, busy traffic
80 1 × 10 –4 Loud radio, classroom lecture
90 1 × 10 –3 Inside a heavy truck; damage from prolonged exposure Several government agencies and health-related professional associations recommend that 85 dB not be exceeded for 8-hour daily exposures in the absence of hearing protection.
100 1 × 10 –2 Noisy factory, siren at 30 m; damage from 8 h per day exposure
110 1 × 10 –1 Damage from 30 min per day exposure
120 1 Loud rock concert, pneumatic chipper at 2 m; threshold of pain
140 1 × 10 2 Jet airplane at 30 m; severe pain, damage in seconds
160 1 × 10 4 Bursting of eardrums

The decibel level of a sound having the threshold intensity of 10 12 W/m 2 size 12{"10" rSup { size 8{ - "12"} } "W/m" rSup { size 8{2} } } {} is β = 0 dB size 12{β=0"dB"} {} , because log 10 1 = 0 size 12{"log" rSub { size 8{"10"} } 1=0} {} . That is, the threshold of hearing is 0 decibels. [link] gives levels in decibels and intensities in watts per meter squared for some familiar sounds.

One of the more striking things about the intensities in [link] is that the intensity in watts per meter squared is quite small for most sounds. The ear is sensitive to as little as a trillionth of a watt per meter squared—even more impressive when you realize that the area of the eardrum is only about 1 cm 2 , so that only 10 16 size 12{"10" rSup { size 8{ - "16"} } } {} W falls on it at the threshold of hearing! Air molecules in a sound wave of this intensity vibrate over a distance of less than one molecular diameter, and the gauge pressures involved are less than 10 9 size 12{"10" rSup { size 8{ - 9} } } {} atm.

Another impressive feature of the sounds in [link] is their numerical range. Sound intensity varies by a factor of 10 12 size 12{"10" rSup { size 8{"12"} } } {} from threshold to a sound that causes damage in seconds. You are unaware of this tremendous range in sound intensity because how your ears respond can be described approximately as the logarithm of intensity. Thus, sound intensity levels in decibels fit your experience better than intensities in watts per meter squared. The decibel scale is also easier to relate to because most people are more accustomed to dealing with numbers such as 0, 53, or 120 than numbers such as 1 . 00 × 10 11 size 12{1 "." "00" times "10" rSup { size 8{ - "11"} } } {} .

One more observation readily verified by examining [link] or using I = ( Δ p ) 2 ρv w 2 is that each factor of 10 in intensity corresponds to 10 dB. For example, a 90 dB sound compared with a 60 dB sound is 30 dB greater, or three factors of 10 (that is, 10 3 times) as intense. Another example is that if one sound is 10 7 as intense as another, it is 70 dB higher. See [link] .

Questions & Answers

how do you calculate the 5% uncertainty of 4cm?
melia Reply
4cm/100×5= 0.2cm
how do you calculate the 5% absolute uncertainty of a 200g mass?
melia Reply
= 200g±(5%)10g
use the 10g as the uncertainty?
which topic u discussing about?
topic of question?
the relationship between the applied force and the deflection
sorry wrong question i meant the 5% uncertainty of 4cm?
its 0.2 cm or 2mm
thank you
the meaning of phrase in physics
Chovwe Reply
is the meaning of phrase in physics
write an expression for a plane progressive wave moving from left to right along x axis and having amplitude 0.02m, frequency of 650Hz and speed if 680ms-¹
Gabriel Reply
how does a model differ from a theory
Friday Reply
To use the vocabulary of model theory and meta-logic, a theory is a set of sentences which can be derived from a formal model using some rule of inference (usually just modus ponens). So, for example, Number Theory is the set of sentences true about numbers. But the model is a structure together wit
with an iterpretation.
what is vector quantity
Ridwan Reply
Vector quality have both direction and magnitude, such as Force, displacement, acceleration and etc.
Is the force attractive or repulsive between the hot and neutral lines hung from power poles? Why?
Jack Reply
what's electromagnetic induction
Chinaza Reply
electromagnetic induction is a process in which conductor is put in a particular position and magnetic field keeps varying.
wow great
what is mutual induction?
mutual induction can be define as the current flowing in one coil that induces a voltage in an adjacent coil.
how to undergo polarization
Ajayi Reply
show that a particle moving under the influence of an attractive force mu/y³ towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v²k² and distance uk²/√u-vk as origin
Gabriel Reply
show that a particle moving under the influence of an attractive force mu/y^3 towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v^2k^2 and distance uk^2/√u-k as origin
Gabriel Reply
No idea.... Are you even sure this question exist?
I can't even understand the question
yes it was an assignment question "^"represent raise to power pls
mu/y³ u>v²k² uk²/√u-vk please help me out
An engineer builds two simple pendula. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10kg . Pendulum 2 has a bob with a mass of 100 kg . Describe how the motion of the pendula will differ if the bobs are both displaced by 12º .
Imtiaz Reply
no ideas
if u at an angle of 12 degrees their period will be same so as their velocity, that means they both move simultaneously since both both hovers at same length meaning they have the same length
Modern cars are made of materials that make them collapsible upon collision. Explain using physics concept (Force and impulse), how these car designs help with the safety of passengers.
Isaac Reply
calculate the force due to surface tension required to support a column liquid in a capillary tube 5mm. If the capillary tube is dipped into a beaker of water
Mildred Reply
find the time required for a train Half a Kilometre long to cross a bridge almost kilometre long racing at 100km/h
method of polarization
What is atomic number?
Makperr Reply
The number of protons in the nucleus of an atom
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?