# 16.11 Energy in waves: intensity

 Page 1 / 3
• Calculate the intensity and the power of rays and waves.

All waves carry energy. The energy of some waves can be directly observed. Earthquakes can shake whole cities to the ground, performing the work of thousands of wrecking balls.

Loud sounds pulverize nerve cells in the inner ear, causing permanent hearing loss. Ultrasound is used for deep-heat treatment of muscle strains. A laser beam can burn away a malignancy. Water waves chew up beaches.

The amount of energy in a wave is related to its amplitude. Large-amplitude earthquakes produce large ground displacements. Loud sounds have higher pressure amplitudes and come from larger-amplitude source vibrations than soft sounds. Large ocean breakers churn up the shore more than small ones. More quantitatively, a wave is a displacement that is resisted by a restoring force. The larger the displacement $x$ , the larger the force $F=\text{kx}$ needed to create it. Because work $W$ is related to force multiplied by distance ( $\text{Fx}$ ) and energy is put into the wave by the work done to create it, the energy in a wave is related to amplitude. In fact, a wave’s energy is directly proportional to its amplitude squared because

$W\propto \text{Fx}={\text{kx}}^{2}\text{.}$

The energy effects of a wave depend on time as well as amplitude. For example, the longer deep-heat ultrasound is applied, the more energy it transfers. Waves can also be concentrated or spread out. Sunlight, for example, can be focused to burn wood. Earthquakes spread out, so they do less damage the farther they get from the source. In both cases, changing the area the waves cover has important effects. All these pertinent factors are included in the definition of intensity     $I$ as power per unit area:

$I=\frac{P}{A}$

where $P$ is the power carried by the wave through area $A$ . The definition of intensity is valid for any energy in transit, including that carried by waves. The SI unit for intensity is watts per square meter ( $\phantom{\rule{0.25em}{0ex}}{\text{W/m}}^{2}$ ). For example, infrared and visible energy from the Sun impinge on Earth at an intensity of $\text{1300}\phantom{\rule{0.25em}{0ex}}{\text{W/m}}^{2}$ just above the atmosphere. There are other intensity-related units in use, too. The most common is the decibel. For example, a 90 decibel sound level corresponds to an intensity of ${\text{10}}^{-3}\phantom{\rule{0.25em}{0ex}}{\text{W/m}}^{2}$ . (This quantity is not much power per unit area considering that 90 decibels is a relatively high sound level. Decibels will be discussed in some detail in a later chapter.

## Calculating intensity and power: how much energy is in a ray of sunlight?

The average intensity of sunlight on Earth’s surface is about $7\text{00}\phantom{\rule{0.25em}{0ex}}{\text{W/m}}^{2}$ .

(a) Calculate the amount of energy that falls on a solar collector having an area of $0\text{.}\text{500}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{2}$ in $4\text{.}\text{00}\phantom{\rule{0.25em}{0ex}}\text{h}$ .

(b) What intensity would such sunlight have if concentrated by a magnifying glass onto an area 200 times smaller than its own?

Strategy a

Because power is energy per unit time or $P=\frac{E}{t}$ , the definition of intensity can be written as $I=\frac{P}{A}=\frac{E/t}{A}$ , and this equation can be solved for E with the given information.

Solution a

1. Begin with the equation that states the definition of intensity:
$I=\frac{P}{A}.$
2. Replace $P$ with its equivalent $E/t$ :
$I=\frac{E/t}{A}.$
3. Solve for $E$ :
$E=\text{IAt}.$
4. Substitute known values into the equation:
$E=\left(\text{700}\phantom{\rule{0.25em}{0ex}}{\text{W/m}}^{2}\right)\left(0\text{.}\text{500}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{2}\right)\left[\left(4\text{.}\text{00}\phantom{\rule{0.25em}{0ex}}\text{h}\right)\left(\text{3600}\phantom{\rule{0.25em}{0ex}}\text{s/h}\right)\right].$
5. Calculate to find $E$ and convert units:
$5\text{.}\text{04}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}\text{J},$

Discussion a

The energy falling on the solar collector in 4 h in part is enough to be useful—for example, for heating a significant amount of water.

Strategy b

Taking a ratio of new intensity to old intensity and using primes for the new quantities, we will find that it depends on the ratio of the areas. All other quantities will cancel.

Solution b

1. Take the ratio of intensities, which yields:
$\frac{I\prime }{I}=\frac{P\prime /A\prime }{P/A}=\frac{A}{A\prime }\phantom{\rule{0.25em}{0ex}}\left(\text{The powers cancel because}\phantom{\rule{0.25em}{0ex}}P\prime =P\right)\text{.}$
2. Identify the knowns:
$A=\text{200}A\prime ,$
$\frac{I\prime }{I}=\text{200}.$
3. Substitute known quantities:
$I\prime =\text{200}I=\text{200}\left(\text{700}\phantom{\rule{0.25em}{0ex}}{\text{W/m}}^{2}\right).$
4. Calculate to find $I\prime$ :
$I\prime =\text{1.40}×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}{\text{W/m}}^{2}.$

Discussion b

Decreasing the area increases the intensity considerably. The intensity of the concentrated sunlight could even start a fire.

a 50kg mass is placed on a frictionless piston fitted to a gas cylinder .If 149 kelvin of heat is supplied to the cylinder increasing the internal energy by 100 joules,determine the height through which the mass of the piston raise
what is thermodynamics
thermodynamic is a branch of physics that teaches on the relationship about heat and anyother form of energy
Emmanuel
Lawal
if a mass of 149 of heat is supplied and there's an increase in internal energy of 100jouls,find the raise in height
Lawal
if l cary box and stop is ther any work
no that because u have moved no distance. for work to be performed a force needs to be applied and a distance needs to be moved
Emmanuel
Different between fundamental unit and derived unit
fundamental unit are independent quantities that do not depend on any other unit while derived unit are quantities that depend on two or more units for it definition
Emmanuel
what is nuclear fission
hello
Shawty
are you there
Shawty
Shawty
what is a vector
vectors are quantities that have numerical value or magnitude and direction.
what is regelation
vector is any quantity that has magnitude and direction
Emmanuel
Physics is a physical science that deals with the study of matter in relation to energy
Hi
Jimoh
hello
Salaudeen
hello
Yes
Maxamuud
hi everyone
what is physics
physics is a physical science that deals with the study of matter in relation to energy
Osayuwa
a15kg powerexerted by the foresafter 3second
what is displacement
movement in a direction
Jason
hello
Hosea
Hey
Smart
haider
Explain why magnetic damping might not be effective on an object made of several thin conducting layers separated by insulation? can someone please explain this i need it for my final exam
Hi
saeid
hi
Yimam
Hi
Jimoh
An object made of several thin conducting layers separated by insulation may not be affected by magnetic damping because the eddy current produced in each layer due to induction will be very small and the opposing magnetic flux produced by the eddy currents will be very small
What is thê principle behind movement of thê taps control
while
Hosea
what is atomic mass
this is the mass of an atom of an element in ratio with the mass of carbon-atom
Chukwuka
show me how to get the accuracies of the values of the resistors for the two circuits i.e for series and parallel sides
Explain why it is difficult to have an ideal machine in real life situations.
tell me
Promise
what's the s . i unit for couple?
Promise
its s.i unit is Nm
Covenant
Force×perpendicular distance N×m=Nm
Oluwakayode
İt iş diffucult to have idêal machine because of FRİCTİON definitely reduce thê efficiency
Oluwakayode
It is difficult to have an ideal machine in real life situation because in ideal machines all the input energy should be converted to output energy . But , some part of energy is always lost in overcoming friction and input energy is always greater than output energy . Hence , no machine is ideal.