# 13.3 The ideal gas law  (Page 4/11)

 Page 4 / 11

## Calculating moles per cubic meter and liters per mole

Calculate: (a) the number of moles in $1\text{.}\text{00}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}$ of gas at STP, and (b) the number of liters of gas per mole.

Strategy and Solution

(a) We are asked to find the number of moles per cubic meter, and we know from [link] that the number of molecules per cubic meter at STP is $2\text{.}\text{68}×{\text{10}}^{\text{25}}$ . The number of moles can be found by dividing the number of molecules by Avogadro’s number. We let $n$ stand for the number of moles,

$n\phantom{\rule{0.25em}{0ex}}{\text{mol/m}}^{3}=\frac{N\phantom{\rule{0.25em}{0ex}}{\text{molecules/m}}^{3}}{6\text{.}\text{02}×{\text{10}}^{\text{23}}\phantom{\rule{0.25em}{0ex}}\text{molecules/mol}}=\frac{2\text{.}\text{68}×{\text{10}}^{\text{25}}\phantom{\rule{0.25em}{0ex}}{\text{molecules/m}}^{3}}{6\text{.}\text{02}×{\text{10}}^{\text{23}}\phantom{\rule{0.25em}{0ex}}\text{molecules/mol}}=\text{44}\text{.}5\phantom{\rule{0.25em}{0ex}}{\text{mol/m}}^{3}\text{.}$

(b) Using the value obtained for the number of moles in a cubic meter, and converting cubic meters to liters, we obtain

$\frac{\left({\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}{\text{L/m}}^{3}\right)}{44\text{.}5\phantom{\rule{0.25em}{0ex}}{\text{mol/m}}^{3}}=\text{22}\text{.}5\phantom{\rule{0.25em}{0ex}}\text{L/mol}\text{.}$

Discussion

This value is very close to the accepted value of 22.4 L/mol. The slight difference is due to rounding errors caused by using three-digit input. Again this number is the same for all gases. In other words, it is independent of the gas.

The (average) molar weight of air (approximately 80% ${\text{N}}_{2}$ and 20% ${\text{O}}_{2}$ is $M=\text{28}\text{.}8\phantom{\rule{0.25em}{0ex}}\text{g}\text{.}$ Thus the mass of one cubic meter of air is 1.28 kg. If a living room has dimensions $5\phantom{\rule{0.25em}{0ex}}\text{m}×\text{5 m}×\text{3 m,}$ the mass of air inside the room is 96 kg, which is the typical mass of a human.

The density of air at standard conditions $\left(P=1\phantom{\rule{0.25em}{0ex}}\text{atm}$ and $T=\text{20}\text{º}\text{C}\right)$ is $1\text{.}\text{28}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}$ . At what pressure is the density $0\text{.}{\text{64 kg/m}}^{3}$ if the temperature and number of molecules are kept constant?

The best way to approach this question is to think about what is happening. If the density drops to half its original value and no molecules are lost, then the volume must double. If we look at the equation $\text{PV}=\text{NkT}$ , we see that when the temperature is constant, the pressure is inversely proportional to volume. Therefore, if the volume doubles, the pressure must drop to half its original value, and ${P}_{\text{f}}=0\text{.}\text{50}\phantom{\rule{0.25em}{0ex}}\text{atm}\text{.}$

## The ideal gas law restated using moles

A very common expression of the ideal gas law uses the number of moles, $n$ , rather than the number of atoms and molecules, $N$ . We start from the ideal gas law,

$\text{PV}=\text{NkT,}$

and multiply and divide the equation by Avogadro’s number ${N}_{\text{A}}$ . This gives

$\text{PV}=\frac{N}{{N}_{\text{A}}}{N}_{\text{A}}\text{kT}\text{.}$

Note that $n=N/{N}_{\text{A}}$ is the number of moles. We define the universal gas constant $R={N}_{\text{A}}k$ , and obtain the ideal gas law in terms of moles.

## Ideal gas law (in terms of moles)

The ideal gas law (in terms of moles) is

$\text{PV}=\text{nRT}.$

The numerical value of $R$ in SI units is

$R={N}_{\text{A}}k=\left(6\text{.}\text{02}×{\text{10}}^{\text{23}}\phantom{\rule{0.25em}{0ex}}{\text{mol}}^{-1}\right)\left(1\text{.}\text{38}×{\text{10}}^{-\text{23}}\phantom{\rule{0.25em}{0ex}}\text{J/K}\right)=8\text{.}\text{31}\phantom{\rule{0.25em}{0ex}}\text{J}/\text{mol}\cdot \text{K}.$

In other units,

$\begin{array}{lll}R& =& 1\text{.}\text{99}\phantom{\rule{0.25em}{0ex}}\text{cal/mol}\cdot \text{K}\\ R& =& \text{0}\text{.}\text{0821 L}\cdot \text{atm/mol}\cdot \text{K}\text{.}\end{array}$

You can use whichever value of $R$ is most convenient for a particular problem.

## Calculating number of moles: gas in a bike tire

How many moles of gas are in a bike tire with a volume of $2\text{.}\text{00}×{\text{10}}^{–3}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}\left(2\text{.}\text{00 L}\right),$ a pressure of $7\text{.}\text{00}×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}\text{Pa}$ (a gauge pressure of just under $\text{90}\text{.}0\phantom{\rule{0.25em}{0ex}}{\text{lb/in}}^{2}$ ), and at a temperature of $\text{18}\text{.}0\text{º}\text{C}$ ?

Strategy

Identify the knowns and unknowns, and choose an equation to solve for the unknown. In this case, we solve the ideal gas law, $\text{PV}=\text{nRT}$ , for the number of moles $n$ .

Solution

1. Identify the knowns.

$\begin{array}{lll}P& =& 7\text{.}\text{00}×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}\text{Pa}\\ V& =& 2\text{.}\text{00}×{\text{10}}^{-3}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}\\ T& =& \text{18}\text{.}0\text{º}\text{C}=\text{291 K}\\ R& =& 8\text{.}\text{31}\phantom{\rule{0.25em}{0ex}}\text{J/mol}\cdot \text{K}\end{array}$

2. Rearrange the equation to solve for $n$ and substitute known values.

$\begin{array}{lll}n& =& \frac{\text{PV}}{\text{RT}}=\frac{\left(7\text{.}\text{00}×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}\text{Pa}\right)\left(2\text{.}00×{\text{10}}^{-3}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}\right)}{\left(8\text{.}\text{31}\phantom{\rule{0.25em}{0ex}}\text{J/mol}\cdot \text{K}\right)\left(\text{291}\phantom{\rule{0.25em}{0ex}}\text{K}\right)}\\ \text{}& =& \text{0}\text{.}\text{579}\phantom{\rule{0.25em}{0ex}}\text{mol}\end{array}$

Discussion

The most convenient choice for $R$ in this case is $8\text{.}\text{31}\phantom{\rule{0.25em}{0ex}}\text{J/mol}\cdot \text{K,}$ because our known quantities are in SI units. The pressure and temperature are obtained from the initial conditions in [link] , but we would get the same answer if we used the final values.

what is thermodynamics
thermodynamic is a branch of physics that teaches on the relationship about heat and anyother form of energy
Emmanuel
if l cary box and stop is ther any work
no that because u have moved no distance. for work to be performed a force needs to be applied and a distance needs to be moved
Emmanuel
Different between fundamental unit and derived unit
fundamental unit are independent quantities that do not depend on any other unit while derived unit are quantities that depend on two or more units for it definition
Emmanuel
what is nuclear fission
hello
Shawty
are you there
Shawty
Shawty
what is a vector
vectors are quantities that have numerical value or magnitude and direction.
what is regelation
vector is any quantity that has magnitude and direction
Emmanuel
Physics is a physical science that deals with the study of matter in relation to energy
Hi
Jimoh
hello
Salaudeen
hello
Yes
Maxamuud
hi everyone
what is physics
physics is a physical science that deals with the study of matter in relation to energy
Osayuwa
a15kg powerexerted by the foresafter 3second
what is displacement
movement in a direction
Jason
hello
Hosea
Hey
Smart
haider
Explain why magnetic damping might not be effective on an object made of several thin conducting layers separated by insulation? can someone please explain this i need it for my final exam
Hi
saeid
hi
Yimam
Hi
Jimoh
An object made of several thin conducting layers separated by insulation may not be affected by magnetic damping because the eddy current produced in each layer due to induction will be very small and the opposing magnetic flux produced by the eddy currents will be very small
What is thê principle behind movement of thê taps control
while
Hosea
what is atomic mass
this is the mass of an atom of an element in ratio with the mass of carbon-atom
Chukwuka
show me how to get the accuracies of the values of the resistors for the two circuits i.e for series and parallel sides
Explain why it is difficult to have an ideal machine in real life situations.
tell me
Promise
what's the s . i unit for couple?
Promise
its s.i unit is Nm
Covenant
Force×perpendicular distance N×m=Nm
Oluwakayode
İt iş diffucult to have idêal machine because of FRİCTİON definitely reduce thê efficiency
Oluwakayode
It is difficult to have an ideal machine in real life situation because in ideal machines all the input energy should be converted to output energy . But , some part of energy is always lost in overcoming friction and input energy is always greater than output energy . Hence , no machine is ideal.
if the classica theory of specific heat is valid,what would be the thermal energy of one kmol of copper at the debye temperature (for copper is 340k)