<< Chapter < Page Chapter >> Page >

Calculating moles per cubic meter and liters per mole

Calculate: (a) the number of moles in 1 . 00 m 3 size 12{1 "." "00"" m" rSup { size 8{3} } } {} of gas at STP, and (b) the number of liters of gas per mole.

Strategy and Solution

(a) We are asked to find the number of moles per cubic meter, and we know from [link] that the number of molecules per cubic meter at STP is 2 . 68 × 10 25 size 12{2 "." "68"´"10" rSup { size 8{"25"} } } {} . The number of moles can be found by dividing the number of molecules by Avogadro’s number. We let n size 12{n} {} stand for the number of moles,

n mol/m 3 = N molecules/m 3 6 . 02 × 10 23 molecules/mol = 2 . 68 × 10 25 molecules/m 3 6 . 02 × 10 23 molecules/mol = 44 . 5 mol/m 3 . size 12{n`"mol/m" rSup { size 8{3} } = { {N`"molecules/m" rSup { size 8{3} } } over {6 "." "02" times "10" rSup { size 8{"23"} } `"molecules/mol"} } = { {2 "." "68" times "10" rSup { size 8{"25"} } `"molecules/m" rSup { size 8{3} } } over {6 "." "02" times "10" rSup { size 8{"23"} } `"molecules/mol"} } ="44" "." 5`"mol/m" rSup { size 8{3} } "." } {}

(b) Using the value obtained for the number of moles in a cubic meter, and converting cubic meters to liters, we obtain

10 3 L/m 3 44 . 5 mol/m 3 = 22 . 5 L/mol . size 12{ { { left ("10" rSup { size 8{3} } `"L/m" rSup { size 8{3} } right )} over {44 "." 5`"mol/m" rSup { size 8{3} } } } ="22" "." 5`"L/mol" "." } {}

Discussion

This value is very close to the accepted value of 22.4 L/mol. The slight difference is due to rounding errors caused by using three-digit input. Again this number is the same for all gases. In other words, it is independent of the gas.

The (average) molar weight of air (approximately 80% N 2 size 12{N rSub { size 8{2} } } {} and 20% O 2 size 12{O rSub { size 8{2} } } {} is M = 28 . 8 g . size 12{M="28" "." 8" g" "." } {} Thus the mass of one cubic meter of air is 1.28 kg. If a living room has dimensions 5 m × 5 m × 3 m, size 12{5" m" times "5 m" times "3 m,"} {} the mass of air inside the room is 96 kg, which is the typical mass of a human.

Got questions? Get instant answers now!

The density of air at standard conditions ( P = 1 atm size 12{ \( P=1" atm"} {} and T = 20 º C ) size 12{T="20"°C \) } {} is 1 . 28 kg/m 3 size 12{1 "." "28"" kg/m" rSup { size 8{3} } } {} . At what pressure is the density 0 . 64 kg/m 3 size 12{0 "." "64 kg/m" rSup { size 8{3} } } {} if the temperature and number of molecules are kept constant?

The best way to approach this question is to think about what is happening. If the density drops to half its original value and no molecules are lost, then the volume must double. If we look at the equation PV = NkT size 12{ ital "PV"= ital "NkT"} {} , we see that when the temperature is constant, the pressure is inversely proportional to volume. Therefore, if the volume doubles, the pressure must drop to half its original value, and P f = 0 . 50 atm . size 12{P rSub { size 8{f} } =0 "." "50"" atm" "." } {}

Got questions? Get instant answers now!

The ideal gas law restated using moles

A very common expression of the ideal gas law uses the number of moles, n size 12{n} {} , rather than the number of atoms and molecules, N size 12{N} {} . We start from the ideal gas law,

PV = NkT, size 12{ ital "PV"= ital "NkT"} {}

and multiply and divide the equation by Avogadro’s number N A size 12{N rSub { size 8{A} } } {} . This gives

PV = N N A N A kT . size 12{ ital "PV"= { {N} over {N rSub { size 8{A} } } } N rSub { size 8{A} } ital "kT" "." } {}

Note that n = N / N A size 12{n=N/N rSub { size 8{A} } } {} is the number of moles. We define the universal gas constant R = N A k size 12{R=N rSub { size 8{A} } k} {} , and obtain the ideal gas law in terms of moles.

Ideal gas law (in terms of moles)

The ideal gas law (in terms of moles) is

PV = nRT . size 12{ ital "PV"= ital "nRT"} {}

The numerical value of R size 12{R} {} in SI units is

R = N A k = 6 . 02 × 10 23 mol 1 1 . 38 × 10 23 J/K = 8 . 31 J / mol K . size 12{R=N rSub { size 8{A} } k= left (6 "." "02" times "10" rSup { size 8{"23"} } `"mol" rSup { size 8{ - 1} } right ) left (1 "." "38" times "10" rSup { size 8{ - "23"} } `"J/K" right )=8 "." "31"`J/"mol" cdot K} {}

In other units,

R = 1 . 99 cal/mol K R = 0 . 0821 L atm/mol K . alignl { stack { size 12{R=1 "." "99"" cal/mol" cdot K} {} #size 12{R"=0" "." "0821 L" cdot "atm/mol" cdot K "." } {} } } {}

You can use whichever value of R size 12{R} {} is most convenient for a particular problem.

Calculating number of moles: gas in a bike tire

How many moles of gas are in a bike tire with a volume of 2 . 00 × 10 3 m 3 ( 2 . 00 L ) , size 12{2 "." "00"´"10" rSup { size 8{ +- 3} } " m" rSup { size 8{3} } \( 2 "." "00 L" \) ,} {} a pressure of 7 . 00 × 10 5 Pa size 12{7 "." "00"´"10" rSup { size 8{5} } " Pa"} {} (a gauge pressure of just under 90 . 0 lb/in 2 size 12{"90" "." 0" lb/in" rSup { size 8{2} } } {} ), and at a temperature of 18 . 0 º C size 12{"18" "." 0°C} {} ?

Strategy

Identify the knowns and unknowns, and choose an equation to solve for the unknown. In this case, we solve the ideal gas law, PV = nRT size 12{ ital "PV"= ital "nRT"} {} , for the number of moles n size 12{n} {} .

Solution

1. Identify the knowns.

P = 7 . 00 × 10 5 Pa V = 2 . 00 × 10 3 m 3 T = 18 . 0 º C = 291 K R = 8 . 31 J/mol K alignl { stack { size 12{P=7 "." "00" times "10" rSup { size 8{5} } " Pa"} {} #V=2 "." "00" times "10" rSup { size 8{ - 3} } " m" rSup { size 8{3} } {} # T="18" "." 0°C="291 K" {} #R=8 "." "31"" J/mol" cdot K {} } } {}

2. Rearrange the equation to solve for n size 12{n} {} and substitute known values.

n = PV RT = 7 . 00 × 10 5 Pa 2 . 00 × 10 3 m 3 8 . 31 J/mol K 291 K = 0 . 579 mol alignl { stack { size 12{n= { { ital "PV"} over { ital "RT"} } = { { left (7 "." "00" times "10" rSup { size 8{5} } `"Pa" right ) left (2 "." 00 times "10" rSup { size 8{ - 3} } `m rSup { size 8{3} } right )} over { left (8 "." "31"`"J/mol" cdot K right ) left ("291"" K" right )} } } {} #" "=" 0" "." "579"`"mol" {} } } {}

Discussion

The most convenient choice for R size 12{R} {} in this case is 8 . 31 J/mol K, size 12{8 "." "31"" J/mol" cdot "K,"} {} because our known quantities are in SI units. The pressure and temperature are obtained from the initial conditions in [link] , but we would get the same answer if we used the final values.

Got questions? Get instant answers now!

Questions & Answers

A body travelling at a velocity of 30ms^-1 in a straight line is brought to rest by application of brakes. if it covers a distance of 100m during this period, find the retardation.
Pamilerin Reply
what is distribution of trade
Grace Reply
what's acceleration
Joshua Reply
The change in position of an object with respect to time
Mfizi
Acceleration is velocity all over time
Pamilerin
hi
Stephen
It's not It's the change of velocity relative to time
Laura
Velocity is the change of position relative to time
Laura
acceleration it is the rate of change in velocity with time
Stephen
acceleration is change in velocity per rate of time
Noara
what is ohm's law
Stephen
Ohm's law is related to resistance by which volatge is the multiplication of current and resistance ( U=RI)
Laura
how i don understand
Willam Reply
how do I access the Multiple Choice Questions? the button never works and the essay one doesn't either
Savannah Reply
How do you determine the magnitude of force
Peace Reply
mass × acceleration OR Work done ÷ distance
Seema
Which eye defect is corrected by a lens having different curvatures in two perpendicular directions?
Valentina Reply
acute astigmatism?
the difference between virtual work and virtual displacement
Noman Reply
How do you calculate uncertainties
Ancilla Reply
What is Elasticity
Salim Reply
using a micro-screw gauge,the thickness of a piece of a A4 white paper is measured to be 0.5+or-0.05 mm. If the length of the A4 paper is 26+or-0.2 cm, determine the volume of the A4 paper in: a). Cubic centimeters b). Cubic meters
Ancilla Reply
what is module
Alex Reply
why it is possible for an object(man) to stay on air without falling down?
akande Reply
its impossible, what do you mean exactly?
Ryan
Exactly
Emmanuella
it's impossible
Your
Why is it not possible to stand in air?
bikko
the air molecules are very light enough to oppose the gravitational pull of the earth on the man..... hence, freefall occurs
Arzail
because of gravitational forces
Pamilerin
this mostly occur in space
Stephen
what is physics
Joshua Reply
no life without physics ....that should tell you something
Exactly
Emmanuella
😎👍
E=MC^2
study of matter and energy and an inter-relation between them.
Minahil
that's how the mass and energy are related in stationery frame
Arzail
Ketucky tepung 10m
firdaus
Treeskin, 6m Cloud gam water 2m Cloud gam white 2m And buur
firdaus
Like dont have but have
firdaus
Two in one
firdaus
Okay
firdaus
DNA card
firdaus
hey am new over hear
Shiwani
War right? My impesilyty again. Don't have INSURAN for me
firdaus
PUSH
firdaus
I give
firdaus
0kay
firdaus
Hear from long
firdaus
Hehehe
firdaus
All physics... Hahahaha
firdaus
Tree skin and two cloud have tokside maybe
firdaus
Sold thing
firdaus
PUSH FIRST. HAHAHAAHA
firdaus
thanks
firdaus
Kinetic energy is the energy due to montion of waves,electrons,atoms, molecule,substances an object s.
Emmanuella
Opjective 0
firdaus
Atom nber 0
firdaus
SOME N
firdaus
10.000m permonth. U use momentom with me
firdaus
hi
Hilal
plz anyone can tell what is meteor and why meteor fall in night? can meteor fall in the day
Hilal
meteor are the glowy (i.e. heated when the enter into our atmosphere) parts of meteoroids. now, meteoroids are the debris resulting from the collision of asteroids or comets. yes, it occurs in daytime too, but due to the daylight, we cant observe it as clearly as in night
Arzail
thank's
Hilal
hello guys
Waka
wich method we use to find the potential on a grounded sphere
Noman
hello
Pamilerin
Physics is the science that studies everything around us from the smallest things like quarks to the biggest things like galaxies. It's simply everything.
Laura
Good day everyone
Divine
It talks mainly about matter with related topics such as forces energy gravity and time. It's amazing
Laura
Hi
Alpha
Physics generally is the study of everything around us.
Steven
physics is the branch of sceince
shafiu
physics is the branch of sceince that deal with motion
shafiu
physics is the branch of sceince that deal with motion &energy
shafiu
with out a physics the life is nothing to see
Yilma Reply
What do you want to talk about😋😋
Emmanuella
the study of all the natural events occuring around us..... this is Physics (until those events obey the laws of physics)
Arzail
Conservation of energy😰
Emmanuella
yeah, that too
Arzail
Energy, it always remains there in a physical system. it can only take the form either in motion (kinetic energy) or in rest (potential energy)
Arzail
In nature organisms feed on one another in an orderly way.
Emmanuella
that describes the food chain, in which we humans are at the top
Arzail
The energy that came initially from the sun 🌞is converted into a form in which it can be stored in green plant.
Emmanuella
Therefore, there is conservation of energy.
Emmanuella
DNA CARD
firdaus
"card"
firdaus
Darag
firdaus
Practice Key Terms 4

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask