<< Chapter < Page Chapter >> Page >

The circulatory system provides many examples of Poiseuille’s law in action—with blood flow regulated by changes in vessel size and blood pressure. Blood vessels are not rigid but elastic. Adjustments to blood flow are primarily made by varying the size of the vessels, since the resistance is so sensitive to the radius. During vigorous exercise, blood vessels are selectively dilated to important muscles and organs and blood pressure increases. This creates both greater overall blood flow and increased flow to specific areas. Conversely, decreases in vessel radii, perhaps from plaques in the arteries, can greatly reduce blood flow. If a vessel’s radius is reduced by only 5% (to 0.95 of its original value), the flow rate is reduced to about ( 0 . 95 ) 4 = 0 . 81 size 12{ \( 0 "." "95" \) rSup { size 8{4} } =0 "." "81"} {} of its original value. A 19% decrease in flow is caused by a 5% decrease in radius. The body may compensate by increasing blood pressure by 19%, but this presents hazards to the heart and any vessel that has weakened walls. Another example comes from automobile engine oil. If you have a car with an oil pressure gauge, you may notice that oil pressure is high when the engine is cold. Motor oil has greater viscosity when cold than when warm, and so pressure must be greater to pump the same amount of cold oil.

The figure shows a section of a cylindrical tube of length l. The two end cross section are shown to have pressure P two and P one respectively. The radius of the cylindrical tube is given by r. The direction of flow is shown by horizontal arrows toward right end of the tube. The flow rate is marked as Q.
Poiseuille’s law applies to laminar flow of an incompressible fluid of viscosity η size 12{η} {} through a tube of length l size 12{l} {} and radius r size 12{r} {} . The direction of flow is from greater to lower pressure. Flow rate Q size 12{Q} {} is directly proportional to the pressure difference P 2 P 1 size 12{P rSub { size 8{2} } - P rSub { size 8{1} } } {} , and inversely proportional to the length l size 12{l} {} of the tube and viscosity η size 12{η} {} of the fluid. Flow rate increases with r 4 size 12{r rSup { size 8{4} } } {} , the fourth power of the radius.

What pressure produces this flow rate?

An intravenous (IV) system is supplying saline solution to a patient at the rate of 0 . 120 cm 3 /s size 12{0 "." "120"``"cm" rSup { size 8{3} } "/s"} {} through a needle of radius 0.150 mm and length 2.50 cm. What pressure is needed at the entrance of the needle to cause this flow, assuming the viscosity of the saline solution to be the same as that of water? The gauge pressure of the blood in the patient’s vein is 8.00 mm Hg. (Assume that the temperature is 20ºC .)


Assuming laminar flow, Poiseuille’s law applies. This is given by

Q = ( P 2 P 1 ) π r 4 8 η l , size 12{Q= { { \( P rSub { size 8{2} } - P rSub { size 8{1} } \) π`r rSup { size 8{4} } } over {8ηl} } } {}

where P 2 size 12{P rSub { size 8{2} } } {} is the pressure at the entrance of the needle and P 1 size 12{P rSub { size 8{1} } } {} is the pressure in the vein. The only unknown is P 2 size 12{P rSub { size 8{2} } } {} .


Solving for P 2 size 12{P rSub { size 8{2} } } {} yields

P 2 = 8 η l πr 4 Q + P 1 . size 12{P rSub { size 8{2} } = { {8ηl} over {πr rSup { size 8{4} } } } Q+P rSub { size 8{1} } } {}

P 1 size 12{P rSub { size 8{1} } } {} is given as 8.00 mm Hg, which converts to 1 . 066 × 10 3 N/m 2 size 12{1 "." "066" times "10" rSup { size 8{3} } `"N/m" rSup { size 8{2} } } {} . Substituting this and the other known values yields

P 2 = 8 ( 1 . 00 × 10 3 N s/m 2 ) ( 2 . 50 × 10 2 m ) π ( 0 . 150 × 10 3 m ) 4 ( 1 . 20 × 10 7 m 3 /s ) + 1 . 066 × 10 3 N/m 2 = 1 . 62 × 10 4 N/m 2 .


This pressure could be supplied by an IV bottle with the surface of the saline solution 1.61 m above the entrance to the needle (this is left for you to solve in this chapter’s Problems and Exercises), assuming that there is negligible pressure drop in the tubing leading to the needle.

Got questions? Get instant answers now!

Flow and resistance as causes of pressure drops

You may have noticed that water pressure in your home might be lower than normal on hot summer days when there is more use. This pressure drop occurs in the water main before it reaches your home. Let us consider flow through the water main as illustrated in [link] . We can understand why the pressure P 1 size 12{P rSub { size 8{1} } } {} to the home drops during times of heavy use by rearranging

Questions & Answers

what is physics
faith Reply
what are the basic of physics
tree physical properties of heat
Bello Reply
tree is a type of organism that grows very tall and have a wood trunk and branches with leaves... how is that related to heat? what did you smoke man?
what are the uses of dimensional analysis
Racheal Reply
Dimensional Analysis. The study of relationships between physical quantities with the help of their dimensions and units of measurements is called dimensional analysis. We use dimensional analysis in order to convert a unit from one form to another.
meaning of OE and making of the subscript nc
ferunmi Reply
can I ask a question
kinetic functional force
Moyagabo Reply
what is a principal wave?
Haider Reply
A wave the movement of particles on rest position transferring energy from one place to another
not wave. i need to know principal wave or waves.
principle wave is a superposition of wave when two or more waves meet at a point , whose amplitude is the algebraic sum of the amplitude of the waves
kindly define principal wave not principle wave (principle of super position) if u can understand my question
what is a model?
Ella Reply
why are electros emitted only when the frequency of the incident radiation is greater than a certain value
b/c u have to know that for emission of electron need specific amount of energy which are gain by electron for emission . if incident rays have that amount of energy electron can be emitted, otherwise no way.
search photoelectric effect on Google
what is ohm's law
Pamilerin Reply
states that electric current in a given metallic conductor is directly proportional to the potential difference applied between its end, provided that the temperature of the conductor and other physical factors such as length and cross-sectional area remains constant. mathematically V=IR
A body travelling at a velocity of 30ms^-1 in a straight line is brought to rest by application of brakes. if it covers a distance of 100m during this period, find the retardation.
Pamilerin Reply
just use v^2-u^2=2as
how often does electrolyte emits?
just use +€^3.7°√π%-4¢•∆¥%
v^2-u^2=2as v=0,u=30,s=100 -30^2=2a*100 -900=200a a=-900/200 a=-4.5m/s^2
what is distribution of trade
Grace Reply
what's acceleration
Joshua Reply
The change in position of an object with respect to time
Acceleration is velocity all over time
It's not It's the change of velocity relative to time
Velocity is the change of position relative to time
acceleration it is the rate of change in velocity with time
acceleration is change in velocity per rate of time
what is ohm's law
Ohm's law is related to resistance by which volatge is the multiplication of current and resistance ( U=RI)
acceleration is the rate of change. of displacement with time.
the rate of change of velocity is called acceleration
how i don understand
Willam Reply
how do I access the Multiple Choice Questions? the button never works and the essay one doesn't either
Savannah Reply
How do you determine the magnitude of force
Peace Reply
mass × acceleration OR Work done ÷ distance
Practice Key Terms 5

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?