<< Chapter < Page Chapter >> Page >

If viscosity is zero, the fluid is frictionless and the resistance to flow is also zero. Comparing frictionless flow in a tube to viscous flow, as in [link] , we see that for a viscous fluid, speed is greatest at midstream because of drag at the boundaries. We can see the effect of viscosity in a Bunsen burner flame, even though the viscosity of natural gas is small.

The resistance R size 12{R} {} to laminar flow of an incompressible fluid having viscosity η size 12{η} {} through a horizontal tube of uniform radius r size 12{r} {} and length l size 12{l} {} , such as the one in [link] , is given by

R = 8 η l π r 4 . size 12{R= { {8η l} over {π r rSup { size 8{4} } } } "."} {}

This equation is called Poiseuille’s law for resistance    after the French scientist J. L. Poiseuille (1799–1869), who derived it in an attempt to understand the flow of blood, an often turbulent fluid.

Part a of the diagram shows a fluid flow across a rectangular non viscous medium. The speed of the fluid is shown to be same across the tube represented as same length of vertical rising arrows. Part b of the diagram shows a fluid flow across a rectangular viscous medium. The speed of the fluid speed at the walls is zero, increasing steadily to its maximum at the center of the tube represented as wave like variation for length of vertical rising arrows. Part c of the figure shows a burning Bunsen burner.
(a) If fluid flow in a tube has negligible resistance, the speed is the same all across the tube. (b) When a viscous fluid flows through a tube, its speed at the walls is zero, increasing steadily to its maximum at the center of the tube. (c) The shape of the Bunsen burner flame is due to the velocity profile across the tube. (credit: Jason Woodhead)

Let us examine Poiseuille’s expression for R size 12{R} {} to see if it makes good intuitive sense. We see that resistance is directly proportional to both fluid viscosity η size 12{η} {} and the length l size 12{l} {} of a tube. After all, both of these directly affect the amount of friction encountered—the greater either is, the greater the resistance and the smaller the flow. The radius r size 12{r} {} of a tube affects the resistance, which again makes sense, because the greater the radius, the greater the flow (all other factors remaining the same). But it is surprising that r size 12{r} {} is raised to the fourth power in Poiseuille’s law. This exponent means that any change in the radius of a tube has a very large effect on resistance. For example, doubling the radius of a tube decreases resistance by a factor of 2 4 = 16 size 12{2 rSup { size 8{4} } ="16"} {} .

Taken together, Q = P 2 P 1 R size 12{Q= { {P rSub { size 8{2} } - P rSub { size 8{1} } } over {R} } } {} and R = 8 η l π r 4 size 12{R= { {8ηl} over {π`r rSup { size 8{4} } } } } {} give the following expression for flow rate:

Q = ( P 2 P 1 ) πr 4 8 η l . size 12{Q= { { \( P rSub { size 8{2} } - P rSub { size 8{1} } \) πr rSup { size 8{4} } } over {8ηl} } } {}

This equation describes laminar flow through a tube. It is sometimes called Poiseuille’s law for laminar flow, or simply Poiseuille’s law    .

Using flow rate: plaque deposits reduce blood flow

Suppose the flow rate of blood in a coronary artery has been reduced to half its normal value by plaque deposits. By what factor has the radius of the artery been reduced, assuming no turbulence occurs?


Assuming laminar flow, Poiseuille’s law states that

Q = ( P 2 P 1 ) πr 4 8 η l . size 12{Q= { { \( P rSub { size 8{2} } - P rSub { size 8{1} } \) πr rSup { size 8{4} } } over {8ηl} } } {}

We need to compare the artery radius before and after the flow rate reduction.


With a constant pressure difference assumed and the same length and viscosity, along the artery we have

Q 1 r 1 4 = Q 2 r 2 4 . size 12{ { {Q rSub { size 8{1} } } over {r rSub { size 8{1} } rSup { size 8{4} } } } = { {Q rSub { size 8{2} } } over {r rSub { size 8{2} } rSup { size 8{4} } } } } {}

So, given that Q 2 = 0 . 5 Q 1 size 12{Q rSub { size 8{2} } =0 "." 5Q rSub { size 8{1} } } {} , we find that r 2 4 = 0 . 5 r 1 4 size 12{r rSub { size 8{2} } rSup { size 8{4} } =0 "." 5r rSub { size 8{1} } rSup { size 8{4} } } {} .

Therefore, r 2 = 0 . 5 0 . 25 r 1 = 0 . 841 r 1 size 12{r rSub { size 8{2} } = left (0 "." 5 right ) rSup { size 8{0 "." "25"} } r rSub { size 8{1} } =0 "." "841"r rSub { size 8{1} } } {} , a decrease in the artery radius of 16%.


This decrease in radius is surprisingly small for this situation. To restore the blood flow in spite of this buildup would require an increase in the pressure difference P 2 P 1 size 12{ left (P rSub { size 8{2} } - P rSub { size 8{1} } right )} {} of a factor of two, with subsequent strain on the heart.

Got questions? Get instant answers now!
Coefficients of viscosity of various fluids
Fluid Temperature (ºC) Viscosity η (mPa·s)
Air 0 0.0171
20 0.0181
40 0.0190
100 0.0218
Ammonia 20 0.00974
Carbon dioxide 20 0.0147
Helium 20 0.0196
Hydrogen 0 0.0090
Mercury 20 0.0450
Oxygen 20 0.0203
Steam 100 0.0130
Water 0 1.792
20 1.002
37 0.6947
40 0.653
100 0.282
Whole blood The ratios of the viscosities of blood to water are nearly constant between 0°C and 37°C. 20 3.015
37 2.084
Blood plasma See note on Whole Blood. 20 1.810
37 1.257
Ethyl alcohol 20 1.20
Methanol 20 0.584
Oil (heavy machine) 20 660
Oil (motor, SAE 10) 30 200
Oil (olive) 20 138
Glycerin 20 1500
Honey 20 2000–10000
Maple Syrup 20 2000–3000
Milk 20 3.0
Oil (Corn) 20 65

Questions & Answers

how.an.equipotential.line is two dimension and equipotential surface is three dimension ?
syed Reply
definition of mass of conversion
umezurike Reply
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
how many subject is in physics
Adeshina Reply
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
how many topic are in physics
Praise what level are you
If u are doing a levels in your first year you do AS topics therefore you do 5 big topic i.e particles radiation, waves and optics, mechanics,materials, electricity. After that you do A level topics like Specific Harmonic motion circular motion astrophysics depends really
Yeah basics of physics prin8
Heat nd Co for a level
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
Tamdy Reply
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
the range of objects and phenomena studied in physics is
Bethel Reply
what is Linear motion
Hamza Reply
straight line motion is called linear motion
then what
linear motion is a motion in a line, be it in a straight line or in a non straight line. It is the rate of change of distance.
your are wrong Saeedul
Linear motion is a one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension
is a one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimensions. 
what is a classical electrodynamics?
what is dynamics
dynamic is the force that stimulates change or progress within the system or process
what is the formula to calculate wavelength of the incident light
David Reply
if a spring is is stiffness of 950nm-1 what work will be done in extending the spring by 60mmp
Hassan Reply
State the forms of energy
Samzy Reply
Word : Mechanical wave Definition : The waves, which need a material medium for their propagation, e.g., Sound waves. \n\nOther Definition: The waves, which need a material medium for their propagation, are called mechanical waves. Mechanical waves are also called elastic waves. Sound waves, water waves are examples of mechanical waves.t Definition: wave consisting of periodic motion of matter; e.g. sound wave or water wave as opposed to electromagnetic wave.h
Clement Reply
what is mechanical wave
Akinpelu Reply
a wave which require material medium for its propagation
The S.I unit for power is what?
Samuel Reply
Am I correct
it can be in kilowatt, megawatt and so
OK that's right
SI.unit of power is.watt=j/c.but kw.and Mw are bigger.umots
What is physics
aish Reply
study of matter and its nature
The word physics comes from a Greek word Physicos which means Nature.The Knowledge of Nature. It is branch of science which deals with the matter and energy and interaction between them.
why in circular motion, a tangential acceleration can change the magnitude of the velocity but not its direction
Syafiqah Reply
because it is balanced by the inward acceleration otherwise known as centripetal acceleration
What is a wave
Mutuma Reply
Tramsmission of energy through a media
is the disturbance that carry materials as propagation from one medium to another
mistakes thanks
Practice Key Terms 5

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?