# 12.4 Viscosity and laminar flow; poiseuille’s law  (Page 3/12)

 Page 3 / 12

If viscosity is zero, the fluid is frictionless and the resistance to flow is also zero. Comparing frictionless flow in a tube to viscous flow, as in [link] , we see that for a viscous fluid, speed is greatest at midstream because of drag at the boundaries. We can see the effect of viscosity in a Bunsen burner flame, even though the viscosity of natural gas is small.

The resistance $R$ to laminar flow of an incompressible fluid having viscosity $\eta$ through a horizontal tube of uniform radius $r$ and length $l$ , such as the one in [link] , is given by

This equation is called Poiseuille’s law for resistance    after the French scientist J. L. Poiseuille (1799–1869), who derived it in an attempt to understand the flow of blood, an often turbulent fluid.

Let us examine Poiseuille’s expression for $R$ to see if it makes good intuitive sense. We see that resistance is directly proportional to both fluid viscosity $\eta$ and the length $l$ of a tube. After all, both of these directly affect the amount of friction encountered—the greater either is, the greater the resistance and the smaller the flow. The radius $r$ of a tube affects the resistance, which again makes sense, because the greater the radius, the greater the flow (all other factors remaining the same). But it is surprising that $r$ is raised to the fourth power in Poiseuille’s law. This exponent means that any change in the radius of a tube has a very large effect on resistance. For example, doubling the radius of a tube decreases resistance by a factor of ${2}^{4}=\text{16}$ .

Taken together, $Q=\frac{{P}_{2}-{P}_{1}}{R}$ and $R=\frac{8\eta l}{\pi {r}^{4}}$ give the following expression for flow rate:

$Q=\frac{\left({P}_{2}-{P}_{1}\right){\mathrm{\pi r}}^{4}}{8\eta l}\text{.}$

This equation describes laminar flow through a tube. It is sometimes called Poiseuille’s law for laminar flow, or simply Poiseuille’s law    .

## Using flow rate: plaque deposits reduce blood flow

Suppose the flow rate of blood in a coronary artery has been reduced to half its normal value by plaque deposits. By what factor has the radius of the artery been reduced, assuming no turbulence occurs?

Strategy

Assuming laminar flow, Poiseuille’s law states that

$Q=\frac{\left({P}_{2}-{P}_{1}\right){\mathrm{\pi r}}^{4}}{8\eta l}\text{.}$

We need to compare the artery radius before and after the flow rate reduction.

Solution

With a constant pressure difference assumed and the same length and viscosity, along the artery we have

$\frac{{Q}_{1}}{{r}_{1}^{4}}=\frac{{Q}_{2}}{{r}_{2}^{4}}\text{.}$

So, given that ${Q}_{2}=0\text{.}\text{5}{Q}_{1}$ , we find that ${r}_{2}^{4}=0\text{.}{5r}_{1}^{4}$ .

Therefore, ${r}_{2}={\left(0\text{.}5\right)}^{0\text{.}\text{25}}{r}_{1}=0\text{.}\text{841}{r}_{1}$ , a decrease in the artery radius of 16%.

Discussion

This decrease in radius is surprisingly small for this situation. To restore the blood flow in spite of this buildup would require an increase in the pressure difference $\left({P}_{2}-{P}_{1}\right)$ of a factor of two, with subsequent strain on the heart.

Coefficients of viscosity of various fluids
Fluid Temperature (ºC) Viscosity $\eta \phantom{\rule{0.25em}{0ex}}\text{(mPa·s)}$
Gases
Air 0 0.0171
20 0.0181
40 0.0190
100 0.0218
Ammonia 20 0.00974
Carbon dioxide 20 0.0147
Helium 20 0.0196
Hydrogen 0 0.0090
Mercury 20 0.0450
Oxygen 20 0.0203
Steam 100 0.0130
Liquids
Water 0 1.792
20 1.002
37 0.6947
40 0.653
100 0.282
Whole blood The ratios of the viscosities of blood to water are nearly constant between 0°C and 37°C. 20 3.015
37 2.084
Blood plasma See note on Whole Blood. 20 1.810
37 1.257
Ethyl alcohol 20 1.20
Methanol 20 0.584
Oil (heavy machine) 20 660
Oil (motor, SAE 10) 30 200
Oil (olive) 20 138
Glycerin 20 1500
Honey 20 2000–10000
Maple Syrup 20 2000–3000
Milk 20 3.0
Oil (Corn) 20 65

how.an.equipotential.line is two dimension and equipotential surface is three dimension ?
definition of mass of conversion
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
Marisa
how many subject is in physics
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
Praise what level are you
yusuf
If u are doing a levels in your first year you do AS topics therefore you do 5 big topic i.e particles radiation, waves and optics, mechanics,materials, electricity. After that you do A level topics like Specific Harmonic motion circular motion astrophysics depends really
Anya
Yeah basics of physics prin8
yusuf
Heat nd Co for a level
yusuf
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
the range of objects and phenomena studied in physics is
what is Linear motion
straight line motion is called linear motion
then what
Amera
linear motion is a motion in a line, be it in a straight line or in a non straight line. It is the rate of change of distance.
Saeedul
Hi
aliyu
Richard
Linear motion is a one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension
Jason
is a one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimensions.
Praise
what is a classical electrodynamics?
Marga
what is dynamics
Marga
dynamic is the force that stimulates change or progress within the system or process
Oze
what is the formula to calculate wavelength of the incident light
if a spring is is stiffness of 950nm-1 what work will be done in extending the spring by 60mmp
State the forms of energy
machanical
Ridwan
Word : Mechanical wave Definition : The waves, which need a material medium for their propagation, e.g., Sound waves. \n\nOther Definition: The waves, which need a material medium for their propagation, are called mechanical waves. Mechanical waves are also called elastic waves. Sound waves, water waves are examples of mechanical waves.t Definition: wave consisting of periodic motion of matter; e.g. sound wave or water wave as opposed to electromagnetic wave.h
correct
Akinpelu
what is mechanical wave
a wave which require material medium for its propagation
syed
The S.I unit for power is what?
watt
Okoli
Am I correct
Okoli
it can be in kilowatt, megawatt and so
Femi
yes
Femi
correct
Jaheim
kW
Akinpelu
OK that's right
Samuel
SI.unit of power is.watt=j/c.but kw.and Mw are bigger.umots
syed
What is physics
study of matter and its nature
Akinpelu
The word physics comes from a Greek word Physicos which means Nature.The Knowledge of Nature. It is branch of science which deals with the matter and energy and interaction between them.
Uniform
why in circular motion, a tangential acceleration can change the magnitude of the velocity but not its direction
reasonable
Femi
because it is balanced by the inward acceleration otherwise known as centripetal acceleration
MUSTAPHA
What is a wave
Tramsmission of energy through a media
Mateo
is the disturbance that carry materials as propagation from one medium to another
Akinpelu
mistakes thanks
Akinpelu