<< Chapter < Page Chapter >> Page >
  • Define laminar flow and turbulent flow.
  • Explain what viscosity is.
  • Calculate flow and resistance with Poiseuille’s law.
  • Explain how pressure drops due to resistance.

Laminar flow and viscosity

When you pour yourself a glass of juice, the liquid flows freely and quickly. But when you pour syrup on your pancakes, that liquid flows slowly and sticks to the pitcher. The difference is fluid friction, both within the fluid itself and between the fluid and its surroundings. We call this property of fluids viscosity . Juice has low viscosity, whereas syrup has high viscosity. In the previous sections we have considered ideal fluids with little or no viscosity. In this section, we will investigate what factors, including viscosity, affect the rate of fluid flow.

The precise definition of viscosity is based on laminar , or nonturbulent, flow. Before we can define viscosity, then, we need to define laminar flow and turbulent flow. [link] shows both types of flow. Laminar flow is characterized by the smooth flow of the fluid in layers that do not mix. Turbulent flow, or turbulence    , is characterized by eddies and swirls that mix layers of fluid together.

Photograph of smoke rising smoothly for a while and then beginning to form swirls and eddies.
Smoke rises smoothly for a while and then begins to form swirls and eddies. The smooth flow is called laminar flow, whereas the swirls and eddies typify turbulent flow. If you watch the smoke (being careful not to breathe on it), you will notice that it rises more rapidly when flowing smoothly than after it becomes turbulent, implying that turbulence poses more resistance to flow. (credit: Creativity103)

[link] shows schematically how laminar and turbulent flow differ. Layers flow without mixing when flow is laminar. When there is turbulence, the layers mix, and there are significant velocities in directions other than the overall direction of flow. The lines that are shown in many illustrations are the paths followed by small volumes of fluids. These are called streamlines . Streamlines are smooth and continuous when flow is laminar, but break up and mix when flow is turbulent. Turbulence has two main causes. First, any obstruction or sharp corner, such as in a faucet, creates turbulence by imparting velocities perpendicular to the flow. Second, high speeds cause turbulence. The drag both between adjacent layers of fluid and between the fluid and its surroundings forms swirls and eddies, if the speed is great enough. We shall concentrate on laminar flow for the remainder of this section, leaving certain aspects of turbulence for later sections.

Part a of the figure shows a laminar flow on a fixed smooth surface. The different layers of the liquid are shown as different colored bands along the horizontal surface. The friction is shown to act all along the line separating two layers. The direction of flow of the fluid is toward right and the velocity is shown as v b for layers at the bottom and v t for layers on top. Part b of the figure shows turbulent flow on a surface with some obstruction. The fluid directions are horizontal on smooth path and irregular near the area of the obstruction. The velocity is v on top as well as at the bottom of the fluid.
(a) Laminar flow occurs in layers without mixing. Notice that viscosity causes drag between layers as well as with the fixed surface. (b) An obstruction in the vessel produces turbulence. Turbulent flow mixes the fluid. There is more interaction, greater heating, and more resistance than in laminar flow.

Making connections: take-home experiment: go down to the river

Try dropping simultaneously two sticks into a flowing river, one near the edge of the river and one near the middle. Which one travels faster? Why?

Questions & Answers

how to prove that Newton's law of universal gravitation F = GmM ______ R²
Kaka Reply
sir dose it apply to the human system
Olubukola Reply
prove that the centrimental force Fc= M1V² _________ r
Kaka Reply
prove that centripetal force Fc = MV² ______ r
Kaka
how lesers can transmit information
mitul Reply
griffts bridge derivative
Ganesh Reply
below me
please explain; when a glass rod is rubbed with silk, it becomes positive and the silk becomes negative- yet both attracts dust. does dust have third types of charge that is attracted to both positive and negative
Timothy Reply
what is a conductor
Timothy
hello
Timothy
below me
why below you
Timothy
no....I said below me ...... nothing below .....ok?
dust particles contains both positive and negative charge particles
Mbutene
corona charge can verify
Stephen
when pressure increases the temperature remain what?
Ibrahim Reply
what is frequency
Mbionyi Reply
define precision briefly
Sujitha Reply
CT scanners do not detect details smaller than about 0.5 mm. Is this limitation due to the wavelength of x rays? Explain.
MITHRA Reply
hope this helps
what's critical angle
Mahmud Reply
The Critical Angle Derivation So the critical angle is defined as the angle of incidence that provides an angle of refraction of 90-degrees. Make particular note that the critical angle is an angle of incidence value. For the water-air boundary, the critical angle is 48.6-degrees.
dude.....next time Google it
okay whatever
Chidalu
pls who can give the definition of relative density?
Temiloluwa
the ratio of the density of a substance to the density of a standard, usually water for a liquid or solid, and air for a gas.
Chidalu
What is momentum
aliyu Reply
mass ×velocity
Chidalu
it is the product of mass ×velocity of an object
Chidalu
how do I highlight a sentence]p? I select the sentence but get options like copy or web search but no highlight. tks. src
Sean Reply
then you can edit your work anyway you want
Wat is the relationship between Instataneous velocity
Oyinlusi Reply
Instantaneous velocity is defined as the rate of change of position for a time interval which is almost equal to zero
Astronomy
The potential in a region between x= 0 and x = 6.00 m lis V= a+ bx, where a = 10.0 V and b = -7.00 V/m. Determine (a) the potential atx=0, 3.00 m, and 6.00 m and (b) the magnitude and direction of the electric ficld at x =0, 3.00 m, and 6.00 m.
Practice Key Terms 5

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask