# 12.3 The most general applications of bernoulli’s equation

 Page 1 / 2
• Calculate using Torricelli’s theorem.
• Calculate power in fluid flow.

## Torricelli’s theorem

[link] shows water gushing from a large tube through a dam. What is its speed as it emerges? Interestingly, if resistance is negligible, the speed is just what it would be if the water fell a distance $h$ from the surface of the reservoir; the water’s speed is independent of the size of the opening. Let us check this out. Bernoulli’s equation must be used since the depth is not constant. We consider water flowing from the surface (point 1) to the tube’s outlet (point 2). Bernoulli’s equation as stated in previously is

${P}_{1}+\frac{1}{2}{\mathrm{\rho v}}_{1}^{2}+\rho {\text{gh}}_{1}={P}_{2}+\frac{1}{2}{\mathrm{\rho v}}_{2}^{2}+\rho {\text{gh}}_{2}\text{.}$

Both ${P}_{1}$ and ${P}_{2}$ equal atmospheric pressure ( ${P}_{1}$ is atmospheric pressure because it is the pressure at the top of the reservoir. ${P}_{2}$ must be atmospheric pressure, since the emerging water is surrounded by the atmosphere and cannot have a pressure different from atmospheric pressure.) and subtract out of the equation, leaving

$\frac{1}{2}{\mathrm{\rho v}}_{1}^{2}+\rho {\text{gh}}_{1}=\frac{1}{2}{\mathrm{\rho v}}_{2}^{2}+\rho {\text{gh}}_{2}\text{.}$

Solving this equation for ${v}_{2}^{2}$ , noting that the density $\rho$ cancels (because the fluid is incompressible), yields

${v}_{2}^{2}={v}_{1}^{2}+2g\left({h}_{1}-{h}_{2}\right)\text{.}$

We let $h={h}_{1}-{h}_{2}$ ; the equation then becomes

${v}_{2}^{2}={v}_{1}^{2}+2\text{gh}$

where $h$ is the height dropped by the water. This is simply a kinematic equation for any object falling a distance $h$ with negligible resistance. In fluids, this last equation is called Torricelli’s theorem . Note that the result is independent of the velocity’s direction, just as we found when applying conservation of energy to falling objects. (a) Water gushes from the base of the Studen Kladenetz dam in Bulgaria. (credit: Kiril Kapustin; http://www.ImagesFromBulgaria.com) (b) In the absence of significant resistance, water flows from the reservoir with the same speed it would have if it fell the distance h size 12{h} {} without friction. This is an example of Torricelli’s theorem. Pressure in the nozzle of this fire hose is less than at ground level for two reasons: the water has to go uphill to get to the nozzle, and speed increases in the nozzle. In spite of its lowered pressure, the water can exert a large force on anything it strikes, by virtue of its kinetic energy. Pressure in the water stream becomes equal to atmospheric pressure once it emerges into the air.

All preceding applications of Bernoulli’s equation involved simplifying conditions, such as constant height or constant pressure. The next example is a more general application of Bernoulli’s equation in which pressure, velocity, and height all change. (See [link] .)

## Calculating pressure: a fire hose nozzle

Fire hoses used in major structure fires have inside diameters of 6.40 cm. Suppose such a hose carries a flow of 40.0 L/s starting at a gauge pressure of $1\text{.}\text{62}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}{\text{N/m}}^{2}$ . The hose goes 10.0 m up a ladder to a nozzle having an inside diameter of 3.00 cm. Assuming negligible resistance, what is the pressure in the nozzle?

Strategy

Here we must use Bernoulli’s equation to solve for the pressure, since depth is not constant.

Solution

Bernoulli’s equation states

${P}_{1}+\frac{1}{2}{\mathrm{\rho v}}_{1}^{2}+\rho {\text{gh}}_{1}={P}_{2}+\frac{1}{2}{\mathrm{\rho v}}_{2}^{2}+\rho {\text{gh}}_{2}\text{,}$

where the subscripts 1 and 2 refer to the initial conditions at ground level and the final conditions inside the nozzle, respectively. We must first find the speeds ${v}_{1}$ and ${v}_{2}$ . Since $Q={A}_{1}{v}_{1}$ , we get

${v}_{1}=\frac{Q}{{A}_{1}}=\frac{\text{40}\text{.}0×{\text{10}}^{-3}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}\text{/s}}{\pi \left(3\text{.}\text{20}×{\text{10}}^{-2}\phantom{\rule{0.25em}{0ex}}\text{m}{\right)}^{2}}=\text{12}\text{.}4\phantom{\rule{0.25em}{0ex}}\text{m/s}\text{.}$

Similarly, we find

${v}_{2}=\text{56.6 m/s}\text{.}$

(This rather large speed is helpful in reaching the fire.) Now, taking ${h}_{1}$ to be zero, we solve Bernoulli’s equation for ${P}_{2}$ :

${P}_{2}={P}_{1}+\frac{1}{2}\rho \left({v}_{1}^{2}-{v}_{2}^{2}\right)-\rho {\text{gh}}_{2}\text{.}$

Substituting known values yields

${P}_{2}=1\text{.}\text{62}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}{\text{N/m}}^{2}+\frac{1}{2}\left(\text{1000}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}\right)\left[\left(\text{12}\text{.}4\phantom{\rule{0.25em}{0ex}}\text{m/s}{\right)}^{2}-\left(\text{56}\text{.}6\phantom{\rule{0.25em}{0ex}}\text{m/s}{\right)}^{2}\right]-\left(\text{1000}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}\right)\left(9\text{.}80\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}\right)\left(\text{10}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{m}\right)=0\text{.}$

Discussion

This value is a gauge pressure, since the initial pressure was given as a gauge pressure. Thus the nozzle pressure equals atmospheric pressure, as it must because the water exits into the atmosphere without changes in its conditions.

what's acceleration
The change in position of an object with respect to time
Mfizi
how i don understand
how do I access the Multiple Choice Questions? the button never works and the essay one doesn't either
How do you determine the magnitude of force
mass × acceleration OR Work done ÷ distance
Seema
Which eye defect is corrected by a lens having different curvatures in two perpendicular directions?
acute astigmatism?
the difference between virtual work and virtual displacement
How do you calculate uncertainties
What is Elasticity
using a micro-screw gauge,the thickness of a piece of a A4 white paper is measured to be 0.5+or-0.05 mm. If the length of the A4 paper is 26+or-0.2 cm, determine the volume of the A4 paper in: a). Cubic centimeters b). Cubic meters
what is module
why it is possible for an object(man) to stay on air without falling down?
its impossible, what do you mean exactly?
Ryan
Exactly
Emmanuella
it's impossible
Your
Why is it not possible to stand in air?
bikko
the air molecules are very light enough to oppose the gravitational pull of the earth on the man..... hence, freefall occurs
Arzail
what is physics
no life without physics ....that should tell you something
Exactly
Emmanuella
😎👍
E=MC^2
study of matter and energy and an inter-relation between them.
Minahil
that's how the mass and energy are related in stationery frame
Arzail
Ketucky tepung 10m
firdaus
Treeskin, 6m Cloud gam water 2m Cloud gam white 2m And buur
firdaus
Like dont have but have
firdaus
Two in one
firdaus
Okay
firdaus
DNA card
firdaus
hey am new over hear
Shiwani
War right? My impesilyty again. Don't have INSURAN for me
firdaus
PUSH
firdaus
I give
firdaus
0kay
firdaus
Hear from long
firdaus
Hehehe
firdaus
All physics... Hahahaha
firdaus
Tree skin and two cloud have tokside maybe
firdaus
Sold thing
firdaus
PUSH FIRST. HAHAHAAHA
firdaus
thanks
firdaus
Kinetic energy is the energy due to montion of waves,electrons,atoms, molecule,substances an object s.
Emmanuella
Opjective 0
firdaus
Atom nber 0
firdaus
SOME N
firdaus
10.000m permonth. U use momentom with me
firdaus
hi
Hilal
plz anyone can tell what is meteor and why meteor fall in night? can meteor fall in the day
Hilal
meteor are the glowy (i.e. heated when the enter into our atmosphere) parts of meteoroids. now, meteoroids are the debris resulting from the collision of asteroids or comets. yes, it occurs in daytime too, but due to the daylight, we cant observe it as clearly as in night
Arzail
thank's
Hilal
hello guys
Waka
wich method we use to find the potential on a grounded sphere
Noman
with out a physics the life is nothing to see
What do you want to talk about😋😋
Emmanuella
the study of all the natural events occuring around us..... this is Physics (until those events obey the laws of physics)
Arzail
Conservation of energy😰
Emmanuella
yeah, that too
Arzail
Energy, it always remains there in a physical system. it can only take the form either in motion (kinetic energy) or in rest (potential energy)
Arzail
In nature organisms feed on one another in an orderly way.
Emmanuella
that describes the food chain, in which we humans are at the top
Arzail
The energy that came initially from the sun 🌞is converted into a form in which it can be stored in green plant.
Emmanuella
Therefore, there is conservation of energy.
Emmanuella
DNA CARD
firdaus
"card"
firdaus
Darag
firdaus
What is x-ray
x-rays are electromagnetic Ray's produced when electrons with very high acceleration is brought to a stop by a target metal..
Felix
DNA CARD. DNA BLOOD(DARAH)
firdaus
@firdaus What is this DNA card? can I get to know?
Arzail
determine how much less the mass of lithium with mass number of 7 and proton of 3 nucleus is compared to that of its constituents.the mass of neutral Li 6.015123 u, calculate the total binding energy and the binding energy per nucleon
Try do car normally don't have oil. Like closing at all
firdaus
At
firdaus
Blosing design
firdaus
At-->automatic
firdaus
Blood DNA
firdaus By By Rhodes By OpenStax By Darlene Paliswat By Madison Christian By Brooke Delaney By By Naveen Tomar By Briana Knowlton By Cath Yu By Rhodes