<< Chapter < Page Chapter >> Page >
  • Calculate using Torricelli’s theorem.
  • Calculate power in fluid flow.

Torricelli’s theorem

[link] shows water gushing from a large tube through a dam. What is its speed as it emerges? Interestingly, if resistance is negligible, the speed is just what it would be if the water fell a distance h size 12{h} {} from the surface of the reservoir; the water’s speed is independent of the size of the opening. Let us check this out. Bernoulli’s equation must be used since the depth is not constant. We consider water flowing from the surface (point 1) to the tube’s outlet (point 2). Bernoulli’s equation as stated in previously is

P 1 + 1 2 ρv 1 2 + ρ gh 1 = P 2 + 1 2 ρv 2 2 + ρ gh 2 . size 12{P rSub { size 8{1} } + { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{1} } rSup { size 8{2} } +ρ ital "gh" rSub { size 8{1} } =P rSub { size 8{2} } + { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{2} } rSup { size 8{2} } +ρ ital "gh" rSub { size 8{2} } } {}

Both P 1 size 12{P rSub { size 8{1} } } {} and P 2 size 12{P rSub { size 8{2} } } {} equal atmospheric pressure ( P 1 size 12{P rSub { size 8{1} } } {} is atmospheric pressure because it is the pressure at the top of the reservoir. P 2 size 12{P rSub { size 8{2} } } {} must be atmospheric pressure, since the emerging water is surrounded by the atmosphere and cannot have a pressure different from atmospheric pressure.) and subtract out of the equation, leaving

1 2 ρv 1 2 + ρ gh 1 = 1 2 ρv 2 2 + ρ gh 2 . size 12{ { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{1} } rSup { size 8{2} } +ρ ital "gh" rSub { size 8{1} } = { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{2} } rSup { size 8{2} } +ρ ital "gh" rSub { size 8{2} } } {}

Solving this equation for v 2 2 size 12{v rSub { size 8{2} } rSup { size 8{2} } } {} , noting that the density ρ cancels (because the fluid is incompressible), yields

v 2 2 = v 1 2 + 2 g ( h 1 h 2 ) . size 12{v rSub { size 8{2} } rSup { size 8{2} } =v rSub { size 8{1} } rSup { size 8{2} } +2g \( h rSub { size 8{1} } - h rSub { size 8{2} } \) } {}

We let h = h 1 h 2 size 12{h=h rSub { size 8{1} } - h rSub { size 8{2} } } {} ; the equation then becomes

v 2 2 = v 1 2 + 2 gh size 12{v rSub { size 8{2} } rSup { size 8{2} } =v rSub { size 8{1} } rSup { size 8{2} } +2 ital "gh"} {}

where h size 12{h} {} is the height dropped by the water. This is simply a kinematic equation for any object falling a distance h size 12{h} {} with negligible resistance. In fluids, this last equation is called Torricelli’s theorem . Note that the result is independent of the velocity’s direction, just as we found when applying conservation of energy to falling objects.

Part a of the figure shows a photograph of a dam with water gushing from a large tube at the base of a dam. Part b shows the schematic diagram for the flow of water in a reservoir. The reservoir is shown in the form of a triangular section with a horizontal opening along the base little near to the base. The water is shown to flow through the horizontal opening near the base. The height which it falls is shown as h two. The pressure and velocity of water at this point are P two and v two. The height to which the water can fall if it falls from a height h above the opening is given by h 2. The pressure and velocity of water at this point are P one and v one.
(a) Water gushes from the base of the Studen Kladenetz dam in Bulgaria. (credit: Kiril Kapustin; http://www.ImagesFromBulgaria.com) (b) In the absence of significant resistance, water flows from the reservoir with the same speed it would have if it fell the distance h size 12{h} {} without friction. This is an example of Torricelli’s theorem.
Figure shows a fire engine that is stationed next to a tall building. A floor of the building ten meters above the ground has caught fire. The flames are shown coming out. A fire man has reached close to the fire caught area using a ladder and is spraying water on the fire using a hose attached to the fire engine.
Pressure in the nozzle of this fire hose is less than at ground level for two reasons: the water has to go uphill to get to the nozzle, and speed increases in the nozzle. In spite of its lowered pressure, the water can exert a large force on anything it strikes, by virtue of its kinetic energy. Pressure in the water stream becomes equal to atmospheric pressure once it emerges into the air.

All preceding applications of Bernoulli’s equation involved simplifying conditions, such as constant height or constant pressure. The next example is a more general application of Bernoulli’s equation in which pressure, velocity, and height all change. (See [link] .)

Calculating pressure: a fire hose nozzle

Fire hoses used in major structure fires have inside diameters of 6.40 cm. Suppose such a hose carries a flow of 40.0 L/s starting at a gauge pressure of 1 . 62 × 10 6 N/m 2 size 12{1 "." "62" times "10" rSup { size 8{6} } `"N/m" rSup { size 8{2} } } {} . The hose goes 10.0 m up a ladder to a nozzle having an inside diameter of 3.00 cm. Assuming negligible resistance, what is the pressure in the nozzle?

Strategy

Here we must use Bernoulli’s equation to solve for the pressure, since depth is not constant.

Solution

Bernoulli’s equation states

P 1 + 1 2 ρv 1 2 + ρ gh 1 = P 2 + 1 2 ρv 2 2 + ρ gh 2 , size 12{P rSub { size 8{1} } + { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{1} } rSup { size 8{2} } +ρ ital "gh" rSub { size 8{1} } =P rSub { size 8{2} } + { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{2} } rSup { size 8{2} } +ρ ital "gh" rSub { size 8{2} } } {}

where the subscripts 1 and 2 refer to the initial conditions at ground level and the final conditions inside the nozzle, respectively. We must first find the speeds v 1 size 12{v rSub { size 8{1} } } {} and v 2 size 12{v rSub { size 8{2} } } {} . Since Q = A 1 v 1 size 12{Q=A rSub { size 8{1} } v"" lSub { size 8{1} } } {} , we get

v 1 = Q A 1 = 40 . 0 × 10 3 m 3 /s π ( 3 . 20 × 10 2 m ) 2 = 12 . 4 m/s . size 12{v rSub { size 8{1} } = { {Q} over {A rSub { size 8{1} } } } = { {"40" "." 0 times "10" rSup { size 8{ - 3} } " m" rSup { size 8{3} } "/s"} over {π \( 3 "." "20" times "10" rSup { size 8{ - 2} } " m" \) rSup { size 8{2} } } } ="12" "." 4" m/s"} {}

Similarly, we find

v 2 = 56.6 m/s . size 12{v rSub { size 8{2} } ="56" "." 6" m/s"} {}

(This rather large speed is helpful in reaching the fire.) Now, taking h 1 size 12{h rSub { size 8{1} } } {} to be zero, we solve Bernoulli’s equation for P 2 size 12{P rSub { size 8{2} } } {} :

P 2 = P 1 + 1 2 ρ v 1 2 v 2 2 ρ gh 2 . size 12{P rSub { size 8{2} } =P rSub { size 8{1} } + { {1} over {2} } ρ \( v rSub { size 8{1} rSup { size 8{2} } } - v rSub { size 8{2} rSup { size 8{2} } } \) - ρ ital "gh" rSub { size 8{2} } } {}

Substituting known values yields

P 2 = 1 . 62 × 10 6 N/m 2 + 1 2 ( 1000 kg/m 3 ) ( 12 . 4 m/s ) 2 ( 56 . 6 m/s ) 2 ( 1000 kg/m 3 ) ( 9 . 80 m/s 2 ) ( 10 . 0 m ) = 0 . size 12{P rSub { size 8{2} } =1 "." "62" times "10" rSup { size 8{6} } " N/m" rSup { size 8{2} } + { {1} over {2} } \( "1000"" kg/m" rSup { size 8{3} } \) left [ \( "12" "." 4" m/s" \) rSup { size 8{2} } - \( "56" "." 6" m/s" \) rSup { size 8{2} } right ] - \( "1000"" kg/m" rSup { size 8{3} } \) \( 9 "." 8" m/s" rSup { size 8{2} } \) \( "10" "." 0" m" \) =0} {}

Discussion

This value is a gauge pressure, since the initial pressure was given as a gauge pressure. Thus the nozzle pressure equals atmospheric pressure, as it must because the water exits into the atmosphere without changes in its conditions.

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask