# 10.3 Dynamics of rotational motion: rotational inertia

 Page 1 / 8
• Understand the relationship between force, mass and acceleration.
• Study the turning effect of force.
• Study the analogy between force and torque, mass and moment of inertia, and linear acceleration and angular acceleration.

If you have ever spun a bike wheel or pushed a merry-go-round, you know that force is needed to change angular velocity as seen in [link] . In fact, your intuition is reliable in predicting many of the factors that are involved. For example, we know that a door opens slowly if we push too close to its hinges. Furthermore, we know that the more massive the door, the more slowly it opens. The first example implies that the farther the force is applied from the pivot, the greater the angular acceleration; another implication is that angular acceleration is inversely proportional to mass. These relationships should seem very similar to the familiar relationships among force, mass, and acceleration embodied in Newton’s second law of motion. There are, in fact, precise rotational analogs to both force and mass.

To develop the precise relationship among force, mass, radius, and angular acceleration, consider what happens if we exert a force $F$ on a point mass $m$ that is at a distance $r$ from a pivot point, as shown in [link] . Because the force is perpendicular to $r$ , an acceleration $a=\frac{F}{m}$ is obtained in the direction of $F$ . We can rearrange this equation such that $F=\text{ma}$ and then look for ways to relate this expression to expressions for rotational quantities. We note that $a=\mathrm{r\alpha }$ , and we substitute this expression into $F=\text{ma}$ , yielding

$F=\text{mr}\alpha \text{.}$

Recall that torque    is the turning effectiveness of a force. In this case, because $\mathbf{\text{F}}$ is perpendicular to $r$ , torque is simply $\tau =\mathrm{Fr}$ . So, if we multiply both sides of the equation above by $r$ , we get torque on the left-hand side. That is,

$\text{rF}={\text{mr}}^{2}\alpha$

or

$\tau ={\text{mr}}^{2}\mathrm{\alpha .}$

This last equation is the rotational analog of Newton’s second law ( $F=\text{ma}$ ), where torque is analogous to force, angular acceleration is analogous to translational acceleration, and ${\text{mr}}^{2}$ is analogous to mass (or inertia). The quantity ${\text{mr}}^{2}$ is called the rotational inertia    or moment of inertia    of a point mass $m$ a distance $r$ from the center of rotation.

## Making connections: rotational motion dynamics

Dynamics for rotational motion is completely analogous to linear or translational dynamics. Dynamics is concerned with force and mass and their effects on motion. For rotational motion, we will find direct analogs to force and mass that behave just as we would expect from our earlier experiences.

find the density of a fluid in which a hydrometer having a density of 0.750g/mL floats with 92.0% of its volume submerged.
Uniform speed
Sunday
(a)calculate the buoyant force on a 2.00-L Helium balloon.(b) given the mass of the rubber in the balloon is 1.50g. what is the vertical force on the balloon if it is let go? you can neglect the volume of the rubber.
To Long
Usman
Neshrin
a thick glass cup cracks when hot liquid is poured into it suddenly
because of the sudden contraction that takes place.
Eklu
railway crack has gap between the end of each length because?
For expansion
Eklu
yes
Aiyelabegan
Please i really find it dificult solving equations on physic, can anyone help me out?
sure
Carlee
what is the equation?
Carlee
Sure
Precious
fersnels biprism spectrometer how to determined
how to study the hall effect to calculate the hall effect coefficient of the given semiconductor have to calculate the carrier density by carrier mobility.
Bala
what is the difference between atomic physics and momentum
find the dimensional equation of work,power,and moment of a force show work?
What's sup guys
Peter
cul and you all
Okeh
cool you bro
Nana
so what is going on here
Nana
hello peeps
Joseph
Michelson Morley experiment
how are you
Naveed
am good
Celine
you
Celine
hi
Bala
Hi
Ahmed
Calculate the final velocity attained, when a ball is given a velocity of 2.5m/s, acceleration of 0.67m/s² and reaches its point in 10s. Good luck!!!
2.68m/s
Doc
vf=vi+at vf=2.5+ 0.67*10 vf= 2.5 + 6.7 vf = 9.2
babar
s = vi t +1/2at sq s=58.5 s=v av X t vf= 9.2
babar
how 2.68
babar
v=u+at where v=final velocity u=initial velocity a=acceleration t=time
Eklu
OBERT
my project is Sol gel process how to prepare this process pls tell me
Bala
the dimension of work and energy is ML2T2 find the unit of work and energy hence drive for work?
KgM2S2
Acquah
Two bodies P and Quarter each of mass 1000g. Moved in the same direction with speed of 10m/s and 20m/s respectively. Calculate the impulse of P and Q obeying newton's 3rd law of motion
kk
Doc
the answer is 0.03n according to the 3rd law of motion if the are in same direction meaning they interact each other.
OBERT
definition for wave?
A disturbance that travel from one medium to another and without causing permanent change to its displacement
Fagbenro
In physics, a wave is a disturbance that transfers energy through matter or space, with little or no associated mass transport (Mass transfer). ... There are two main types ofwaves: mechanical and electromagnetic. Mechanicalwaves propagate through a physical matter, whose substance is being deformed
Devansh
K
Manyo
thanks jare
Doc
Thanks
Note: LINEAR MOMENTUM Linear momentum is defined as the product of a system’s mass multiplied by its velocity: size 12{p=mv} {}
what is physic
zalmia
Study of matter and energy
Fagbenro
physics is the science of matter and energy and their interactions
Acquah
physics is the technology behind air and matter
Doc
Okay
William
hi sir
Bala
how easy to understanding physics sir
Bala
Easy to learn
William