<< Chapter < Page Chapter >> Page >
  • Understand the relationship between force, mass and acceleration.
  • Study the turning effect of force.
  • Study the analogy between force and torque, mass and moment of inertia, and linear acceleration and angular acceleration.

If you have ever spun a bike wheel or pushed a merry-go-round, you know that force is needed to change angular velocity as seen in [link] . In fact, your intuition is reliable in predicting many of the factors that are involved. For example, we know that a door opens slowly if we push too close to its hinges. Furthermore, we know that the more massive the door, the more slowly it opens. The first example implies that the farther the force is applied from the pivot, the greater the angular acceleration; another implication is that angular acceleration is inversely proportional to mass. These relationships should seem very similar to the familiar relationships among force, mass, and acceleration embodied in Newton’s second law of motion. There are, in fact, precise rotational analogs to both force and mass.

The given figure shows a bike tire being pulled by a hand with a force F backward indicated by a red horizontal arrow that produces an angular acceleration alpha indicated by a curved yellow arrow in counter-clockwise direction.
Force is required to spin the bike wheel. The greater the force, the greater the angular acceleration produced. The more massive the wheel, the smaller the angular acceleration. If you push on a spoke closer to the axle, the angular acceleration will be smaller.

To develop the precise relationship among force, mass, radius, and angular acceleration, consider what happens if we exert a force F size 12{F} {} on a point mass m size 12{m} {} that is at a distance r size 12{r} {} from a pivot point, as shown in [link] . Because the force is perpendicular to r size 12{r} {} , an acceleration a = F m size 12{a= { {F} over {m} } } {} is obtained in the direction of F size 12{F} {} . We can rearrange this equation such that F = ma size 12{F= ital "ma"} {} and then look for ways to relate this expression to expressions for rotational quantities. We note that a = size 12{a=rα} {} , and we substitute this expression into F = ma size 12{F= ital "ma"} {} , yielding

F = mr α . size 12{F= ital "mr"α"."} {}

Recall that torque    is the turning effectiveness of a force. In this case, because F size 12{"F"} {} is perpendicular to r size 12{r} {} , torque is simply τ = Fr size 12{τ=rα} {} . So, if we multiply both sides of the equation above by r size 12{r} {} , we get torque on the left-hand side. That is,

rF = mr 2 α size 12{ ital "rF"= ital "mr" rSup { size 8{2} } α} {}

or

τ = mr 2 α. size 12{τ= ital "mr" rSup { size 8{2} } α.} {}

This last equation is the rotational analog of Newton’s second law ( F = ma size 12{F= ital "ma"} {} ), where torque is analogous to force, angular acceleration is analogous to translational acceleration, and mr 2 size 12{ ital "mr" rSup { size 8{2} } } {} is analogous to mass (or inertia). The quantity mr 2 size 12{ ital "mr" rSup { size 8{2} } } {} is called the rotational inertia    or moment of inertia    of a point mass m size 12{m} {} a distance r size 12{r} {} from the center of rotation.

The given figure shows an object of mass m, kept on a horizontal frictionless table, attached to a pivot point, which is in the center of the table, by a cord that supplies centripetal force. A force F is applied to the object perpendicular to the radius r, which is indicated by a red arrow tangential to the circle, causing the object to move in counterclockwise direcion.
An object is supported by a horizontal frictionless table and is attached to a pivot point by a cord that supplies centripetal force. A force F size 12{F} {} is applied to the object perpendicular to the radius r size 12{r} {} , causing it to accelerate about the pivot point. The force is kept perpendicular to r size 12{r} {} .

Making connections: rotational motion dynamics

Dynamics for rotational motion is completely analogous to linear or translational dynamics. Dynamics is concerned with force and mass and their effects on motion. For rotational motion, we will find direct analogs to force and mass that behave just as we would expect from our earlier experiences.

Questions & Answers

how to create a software using Android phone
Wiseman Reply
how
basra
what is the difference between C and C++.
Yan Reply
what is software
Sami Reply
software is a instructions like programs
Shambhu
what is the difference between C and C++.
Yan
yes, how?
Hayder
what is software engineering
Ahmad
software engineering is a the branch of computer science deals with the design,development, testing and maintenance of software applications.
Hayder
who is best bw software engineering and cyber security
Ahmad
Both software engineering and cybersecurity offer exciting career prospects, but your choice ultimately depends on your interests and skills. If you enjoy problem-solving, programming, and designing software syste
Hayder
what's software processes
Ntege Reply
I haven't started reading yet. by device (hardware) or for improving design Lol? Here. Requirement, Design, Implementation, Verification, Maintenance.
Vernon
I can give you a more valid answer by 5:00 By the way gm.
Vernon
it is all about designing,developing, testing, implementing and maintaining of software systems.
Ehenew
hello assalamualaikum
Sami
My name M Sami I m 2nd year student
Sami
what is the specific IDE for flutter programs?
Mwami Reply
jegudgdtgd my Name my Name is M and I have been talking about iey my papa john's university of washington post I tagged I will be in
Mwaqas Reply
yes
usman
how disign photo
atul Reply
hlo
Navya
hi
Michael
yes
Subhan
Show the necessary steps with description in resource monitoring process (CPU,memory,disk and network)
samuel Reply
What is software engineering
Tafadzwa Reply
Software engineering is a branch of computer science directed to writing programs to develop Softwares that can drive or enable the functionality of some hardwares like phone , automobile and others
kelvin
if any requirement engineer is gathering requirements from client and after getting he/she Analyze them this process is called
Alqa Reply
The following text is encoded in base 64. Ik5ldmVyIHRydXN0IGEgY29tcHV0ZXIgeW91IGNhbid0IHRocm93IG91dCBhIHdpbmRvdyIgLSBTdGV2ZSBXb3puaWFr Decode it, and paste the decoded text here
Julian Reply
what to do you mean
Vincent
hello
ALI
how are you ?
ALI
What is the command to list the contents of a directory in Unix and Unix-like operating systems
George Reply
how can i make my own software free of cost
Faizan Reply
like how
usman
hi
Hayder
The name of the author of our software engineering book is Ian Sommerville.
Doha Reply
what is software
Sampson Reply
the set of intruction given to the computer to perform a task
Noor
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask