# 0.4 Glossary of key symbols and notation

 Page 1 / 1

In this glossary, key symbols and notation are briefly defined.

Symbol Definition
$\overline{\text{any symbol}}$ average (indicated by a bar over a symbol—e.g., $\overline{v}$ is average velocity)
$°\text{C}$ Celsius degree
$°\text{F}$ Fahrenheit degree
$\text{//}$ parallel
$\perp$ perpendicular
$\propto$ proportional to
$±$ plus or minus
${\phantom{\rule{0.25em}{0ex}}}_{0}$ zero as a subscript denotes an initial value
$\alpha$ alpha rays
$\alpha$ angular acceleration
$\alpha$ temperature coefficient(s) of resistivity
$\beta$ beta rays
$\beta$ sound level
$\beta$ volume coefficient of expansion
${\beta }^{-}$ electron emitted in nuclear beta decay
${\beta }^{+}$ positron decay
$\gamma$ gamma rays
$\gamma$ surface tension
$\gamma =1/\sqrt{1-{v}^{2}/{c}^{2}}$ a constant used in relativity
$\Delta$ change in whatever quantity follows
$\delta$ uncertainty in whatever quantity follows
$\mathrm{\Delta E}$ change in energy between the initial and final orbits of an electron in an atom
$\mathrm{\Delta E}$ uncertainty in energy
$\mathrm{\Delta m}$ difference in mass between initial and final products
$\mathrm{\Delta N}$ number of decays that occur
$\mathrm{\Delta p}$ change in momentum
$\mathrm{\Delta p}$ uncertainty in momentum
$\Delta {\text{PE}}_{\text{g}}$ change in gravitational potential energy
$\mathrm{\Delta \theta }$ rotation angle
$\mathrm{\Delta s}$ distance traveled along a circular path
$\mathrm{\Delta t}$ uncertainty in time
${\mathrm{\Delta t}}_{0}$ proper time as measured by an observer at rest relative to the process
$\mathrm{\Delta V}$ potential difference
$\mathrm{\Delta x}$ uncertainty in position
${\epsilon }_{0}$ permittivity of free space
$\eta$ viscosity
$\theta$ angle between the force vector and the displacement vector
$\theta$ angle between two lines
$\theta$ contact angle
$\theta$ direction of the resultant
${\theta }_{b}$ Brewster's angle
${\theta }_{c}$ critical angle
$\kappa$ dielectric constant
$\lambda$ decay constant of a nuclide
$\lambda$ wavelength
${\lambda }_{n}$ wavelength in a medium
${\mu }_{0}$ permeability of free space
${\mu }_{\text{k}}$ coefficient of kinetic friction
${\mu }_{\text{s}}$ coefficient of static friction
${v}_{e}$ electron neutrino
${\pi }^{+}$ positive pion
${\pi }^{-}$ negative pion
${\pi }^{0}$ neutral pion
$\rho$ density
${\rho }_{\text{c}}$ critical density, the density needed to just halt universal expansion
${\rho }_{\text{fl}}$ fluid density
${\overline{\rho }}_{\text{obj}}$ average density of an object
$\rho /{\rho }_{\text{w}}$ specific gravity
$\tau$ characteristic time constant for a resistance and inductance $\left(\text{RL}\right)$ or resistance and capacitance $\left(\text{RC}\right)$ circuit
$\tau$ characteristic time for a resistor and capacitor $\left(\text{RC}\right)$ circuit
$\tau$ torque
$Υ$ upsilon meson
$\Phi$ magnetic flux
$\varphi$ phase angle
$\Omega$ ohm (unit)
$\omega$ angular velocity
$A$ ampere (current unit)
$A$ area
$A$ cross-sectional area
$A$ total number of nucleons
$a$ acceleration
${a}_{\text{B}}$ Bohr radius
${a}_{\text{c}}$ centripetal acceleration
${a}_{\text{t}}$ tangential acceleration
$\text{AC}$ alternating current
$\text{AM}$ amplitude modulation
$\text{atm}$ atmosphere
$B$ baryon number
$B$ blue quark color
$\overline{B}$ antiblue (yellow) antiquark color
$b$ quark flavor bottom or beauty
$B$ bulk modulus
$B$ magnetic field strength
${\text{B}}_{\text{int}}$ electron’s intrinsic magnetic field
${\text{B}}_{\text{orb}}$ orbital magnetic field
$\text{BE}$ binding energy of a nucleus—it is the energy required to completely disassemble it into separate protons and neutrons
$\text{BE}/A$ binding energy per nucleon
$\text{Bq}$ becquerel—one decay per second
$C$ capacitance (amount of charge stored per volt)
$C$ coulomb (a fundamental SI unit of charge)
${C}_{\text{p}}$ total capacitance in parallel
${C}_{\text{s}}$ total capacitance in series
$\text{CG}$ center of gravity
$\text{CM}$ center of mass
$c$ quark flavor charm
$c$ specific heat
$c$ speed of light
$\text{Cal}$ kilocalorie
$\text{cal}$ calorie
${\text{COP}}_{\text{hp}}$ heat pump’s coefficient of performance
${\text{COP}}_{\text{ref}}$ coefficient of performance for refrigerators and air conditioners
$\text{cos}\phantom{\rule{0.20em}{0ex}}\theta$ cosine
$\text{cot}\phantom{\rule{0.20em}{0ex}}\theta$ cotangent
$\text{csc}\phantom{\rule{0.20em}{0ex}}\theta$ cosecant
$D$ diffusion constant
$d$ displacement
$d$ quark flavor down
$\text{dB}$ decibel
${d}_{\text{i}}$ distance of an image from the center of a lens
${d}_{\text{o}}$ distance of an object from the center of a lens
$\text{DC}$ direct current
$E$ electric field strength
$\epsilon$ emf (voltage) or Hall electromotive force
$\text{emf}$ electromotive force
$E$ energy of a single photon
$E$ nuclear reaction energy
$E$ relativistic total energy
$E$ total energy
${E}_{0}$ ground state energy for hydrogen
${E}_{0}$ rest energy
$\text{EC}$ electron capture
${E}_{\text{cap}}$ energy stored in a capacitor
$\text{Eff}$ efficiency—the useful work output divided by the energy input
${\text{Eff}}_{\text{C}}$ Carnot efficiency
${E}_{\text{in}}$ energy consumed (food digested in humans)
${E}_{\text{ind}}$ energy stored in an inductor
${E}_{\text{out}}$ energy output
$e$ emissivity of an object
${e}^{+}$ antielectron or positron
$\text{eV}$ electron volt
$\text{F}$ farad (unit of capacitance, a coulomb per volt)
$\text{F}$ focal point of a lens
$\mathbf{\text{F}}$ force
$F$ magnitude of a force
$F$ restoring force
${F}_{\text{B}}$ buoyant force
${F}_{\text{c}}$ centripetal force
${F}_{\text{i}}$ force input
${\mathbf{\text{F}}}_{\text{net}}$ net force
${F}_{\text{o}}$ force output
$\text{FM}$ frequency modulation
$f$ focal length
$f$ frequency
${f}_{0}$ resonant frequency of a resistance, inductance, and capacitance $\left(\text{RLC}\right)$ series circuit
${f}_{0}$ threshold frequency for a particular material (photoelectric effect)
${f}_{1}$ fundamental
${f}_{2}$ first overtone
${f}_{3}$ second overtone
${f}_{\text{B}}$ beat frequency
${f}_{\text{k}}$ magnitude of kinetic friction
${f}_{\text{s}}$ magnitude of static friction
$G$ gravitational constant
$G$ green quark color
$\overline{G}$ antigreen (magenta) antiquark color
$g$ acceleration due to gravity
$g$ gluons (carrier particles for strong nuclear force)
$h$ change in vertical position
$h$ height above some reference point
$h$ maximum height of a projectile
$h$ Planck's constant
$\text{hf}$ photon energy
${h}_{\text{i}}$ height of the image
${h}_{\text{o}}$ height of the object
$I$ electric current
$I$ intensity
$I$ intensity of a transmitted wave
$I$ moment of inertia (also called rotational inertia)
${I}_{0}$ intensity of a polarized wave before passing through a filter
${I}_{\text{ave}}$ average intensity for a continuous sinusoidal electromagnetic wave
${I}_{\text{rms}}$ average current
$\text{J}$ joule
$J/\text{Ψ}$ Joules/psi meson
$\text{K}$ kelvin
$k$ Boltzmann constant
$k$ force constant of a spring
${K}_{\alpha }$ x rays created when an electron falls into an $n=1$ shell vacancy from the $n=3$ shell
${K}_{\beta }$ x rays created when an electron falls into an $n=2$ shell vacancy from the $n=3$ shell
$\text{kcal}$ kilocalorie
$\text{KE}$ translational kinetic energy
$\text{KE}+\text{PE}$ mechanical energy
${\text{KE}}_{e}$ kinetic energy of an ejected electron
${\text{KE}}_{\text{rel}}$ relativistic kinetic energy
${\text{KE}}_{\text{rot}}$ rotational kinetic energy
$\overline{\text{KE}}$ thermal energy
$\text{kg}$ kilogram (a fundamental SI unit of mass)
$L$ angular momentum
$\text{L}$ liter
$L$ magnitude of angular momentum
$L$ self-inductance
$\ell$ angular momentum quantum number
${L}_{\alpha }$ x rays created when an electron falls into an $n=2$ shell from the $n=3$ shell
${L}_{e}$ electron total family number
${L}_{\mu }$ muon family total number
${L}_{\tau }$ tau family total number
${L}_{\text{f}}$ heat of fusion
${L}_{\text{f}}\phantom{\rule{0.20em}{0ex}}\text{and}\phantom{\rule{0.20em}{0ex}}{L}_{\text{v}}$ latent heat coefficients
${\text{L}}_{\text{orb}}$ orbital angular momentum
${L}_{\text{s}}$ heat of sublimation
${L}_{\text{v}}$ heat of vaporization
${L}_{z}$ z - component of the angular momentum
$M$ angular magnification
$M$ mutual inductance
$\text{m}$ indicates metastable state
$m$ magnification
$m$ mass
$m$ mass of an object as measured by a person at rest relative to the object
$\text{m}$ meter (a fundamental SI unit of length)
$m$ order of interference
$m$ overall magnification (product of the individual magnifications)
$m\left({\text{}}^{A}\text{X}\right)$ atomic mass of a nuclide
$\text{MA}$ mechanical advantage
${m}_{\text{e}}$ magnification of the eyepiece
${m}_{e}$ mass of the electron
${m}_{\ell }$ angular momentum projection quantum number
${m}_{n}$ mass of a neutron
${m}_{\text{o}}$ magnification of the objective lens
$\text{mol}$ mole
${m}_{p}$ mass of a proton
${m}_{\text{s}}$ spin projection quantum number
$N$ magnitude of the normal force
$\text{N}$ newton
$\mathbf{\text{N}}$ normal force
$N$ number of neutrons
$n$ index of refraction
$n$ number of free charges per unit volume
${N}_{\text{A}}$ Avogadro's number
${N}_{\text{r}}$ Reynolds number
$\text{N}\cdot \text{m}$ newton-meter (work-energy unit)
$\text{N}\cdot \text{m}$ newtons times meters (SI unit of torque)
$\text{OE}$ other energy
$P$ power
$P$ power of a lens
$P$ pressure
$\mathbf{\text{p}}$ momentum
$p$ momentum magnitude
$p$ relativistic momentum
${\mathbf{\text{p}}}_{\text{tot}}$ total momentum
${\mathbf{\text{p}}}_{\text{tot}}^{\text{'}}$ total momentum some time later
${P}_{\text{abs}}$ absolute pressure
${P}_{\text{atm}}$ atmospheric pressure
${P}_{\text{atm}}$ standard atmospheric pressure
$\text{PE}$ potential energy
${\text{PE}}_{\text{el}}$ elastic potential energy
${\text{PE}}_{\text{elec}}$ electric potential energy
${\text{PE}}_{\text{s}}$ potential energy of a spring
${P}_{\text{g}}$ gauge pressure
${P}_{\text{in}}$ power consumption or input
${P}_{\text{out}}$ useful power output going into useful work or a desired, form of energy
$Q$ latent heat
$Q$ net heat transferred into a system
$Q$ flow rate—volume per unit time flowing past a point
$+Q$ positive charge
$-Q$ negative charge
$q$ electron charge
${q}_{p}$ charge of a proton
$q$ test charge
$\text{QF}$ quality factor
$R$ activity, the rate of decay
$R$ radius of curvature of a spherical mirror
$R$ red quark color
$\overline{R}$ antired (cyan) quark color
$R$ resistance
$\text{R}$ resultant or total displacement
$R$ Rydberg constant
$R$ universal gas constant
$r$ distance from pivot point to the point where a force is applied
$r$ internal resistance
${r}_{\perp }$ perpendicular lever arm
$r$ radius of a nucleus
$r$ radius of curvature
$r$ resistivity
$\text{r or rad}$ radiation dose unit
$\text{rem}$ roentgen equivalent man
$\text{rad}$ radian
$\text{RBE}$ relative biological effectiveness
$\text{RC}$ resistor and capacitor circuit
$\text{rms}$ root mean square
${r}_{n}$ radius of the n th H-atom orbit
${R}_{\text{p}}$ total resistance of a parallel connection
${R}_{\text{s}}$ total resistance of a series connection
${R}_{\text{s}}$ Schwarzschild radius
$S$ entropy
$\mathbf{\text{S}}$ intrinsic spin (intrinsic angular momentum)
$S$ magnitude of the intrinsic (internal) spin angular momentum
$S$ shear modulus
$S$ strangeness quantum number
$s$ quark flavor strange
$\text{s}$ second (fundamental SI unit of time)
$s$ spin quantum number
$\mathbf{\text{s}}$ total displacement
$\text{sec}\phantom{\rule{0.20em}{0ex}}\theta$ secant
$\text{sin}\phantom{\rule{0.20em}{0ex}}\theta$ sine
${s}_{z}$ z -component of spin angular momentum
$T$ period—time to complete one oscillation
$T$ temperature
${T}_{\text{c}}$ critical temperature—temperature below which a material becomes a superconductor
$T$ tension
$\text{T}$ tesla (magnetic field strength B )
$t$ quark flavor top or truth
$t$ time
${t}_{1/2}$ half-life—the time in which half of the original nuclei decay
$\text{tan}\phantom{\rule{0.20em}{0ex}}\theta$ tangent
$U$ internal energy
$u$ quark flavor up
$\text{u}$ unified atomic mass unit
$\mathbf{\text{u}}$ velocity of an object relative to an observer
${\mathbf{\text{u}}}^{\mathbf{\text{'}}}$ velocity relative to another observer
$V$ electric potential
$V$ terminal voltage
$\text{V}$ volt (unit)
$V$ volume
$\mathbf{\text{v}}$ relative velocity between two observers
$v$ speed of light in a material
$\mathbf{\text{v}}$ velocity
$\overline{\mathbf{\text{v}}}$ average fluid velocity
${V}_{\text{B}}-{V}_{\text{A}}$ change in potential
${\mathbf{\text{v}}}_{\text{d}}$ drift velocity
${V}_{\text{p}}$ transformer input voltage
${V}_{\text{rms}}$ rms voltage
${V}_{\text{s}}$ transformer output voltage
${\mathbf{\text{v}}}_{\text{tot}}$ total velocity
${v}_{\text{w}}$ propagation speed of sound or other wave
${\mathbf{\text{v}}}_{\text{w}}$ wave velocity
$W$ work
$W$ net work done by a system
$\text{W}$ watt
$w$ weight
${w}_{\text{fl}}$ weight of the fluid displaced by an object
${W}_{\text{c}}$ total work done by all conservative forces
${W}_{\text{nc}}$ total work done by all nonconservative forces
${W}_{\text{out}}$ useful work output
$X$ amplitude
$\text{X}$ symbol for an element
${\text{}}^{Z}{X}_{N}$ notation for a particular nuclide
$x$ deformation or displacement from equilibrium
$x$ displacement of a spring from its undeformed position
$x$ horizontal axis
${X}_{\text{C}}$ capacitive reactance
${X}_{\text{L}}$ inductive reactance
${x}_{\text{rms}}$ root mean square diffusion distance
$y$ vertical axis
$Y$ elastic modulus or Young's modulus
$Z$ atomic number (number of protons in a nucleus)
$Z$ impedance

what is heat
heat is the transfer of internal energy from one point to another
HENRY
what is a wave
wave means. A field of study
aondohemba
what are Atoms
aondohemba
is the movement back and front or up and down
sani
how ?
aondohemba
wave is a disturbance that transfers energy through matter or space with little or no associated mass.
lots
A wave is a motion of particles in disturbed medium that carry energy from one midium to another
conist
an atom is the smallest unit( particle) of an element that bares it's chemical properties
conist
what is electromagnetic induction?
conist
How is the de Broglie wavelength of electrons related to the quantization of their orbits in atoms and molecules?
How do you convert 0.0045kgcmÂ³ to the si unit?
how many state of matter do we really have like I mean... is there any newly discovered state of matter?
I only know 5: •Solids •Liquids •Gases •Plasma •Bose-Einstein condensate
Thapelo
Alright Thank you
Falana
Which one is the Bose-Einstein
James
can you explain what plasma and the I her one you mentioned
Olatunde
u can say sun or stars are just the state of plasma
Mohit
but the are more than seven
Issa
list it out I wanna know
Cristal
what the meaning of continuum
What state of matter is fire
fire is not in any state of matter...fire is rather a form of energy produced from an oxidising reaction.
Xenda
Isn`t fire the plasma state of matter?
Walter
all this while I taught it was plasma
Victor
How can you define time?
Time can be defined as a continuous , dynamic , irreversible , unpredictable quantity .
Tanaya
unpredictable? but I can say after one o'clock its going to be two o'clock predictably!
Victor
how can we define vector
mahmud
I would define it as having a magnitude (size)with a direction. An example I can think of is a car traveling at 50m/s (magnitude) going North (direction)
Hanzo
as for me guys u would say time is quantity that measures how long it takes for a specific condition to happen e.g how long it takes for the day to end or how it takes for the travelling car to cover a km.
conist
what is the relativity of physics
How do you convert 0.0045kgcm³ to the si unit?
flint
What is the formula for motion
V=u+at V²=u²-2as
flint
S=ut+½at
flint
they are eqns of linear motion
King
S=Vt
Thapelo
v=u+at s=ut+at^\2 v^=u^+2as where ^=2
King
hi
hello
King
Explain dopplers effect
Not yet learnt
Bob
Explain motion with types
Bob
Acceleration is the change in velocity over time. Given this information, is acceleration a vector or a scalar quantity? Explain.
Scalar quantity Because acceleration has only magnitude
Bob
acleration is vectr quatity it is found in a spefied direction and it is product of displcemnt
bhat
its a scalar quantity
Paul
velocity is speed and direction. since velocity is a part of acceleration that makes acceleration a vector quantity. an example of this is centripetal acceleration. when you're moving in a circular patter at a constant speed, you are still accelerating because your direction is constantly changing.
Josh
acceleration is a vector quantity. As explained by Josh Thompson, even in circular motion, bodies undergoing circular motion only accelerate because on the constantly changing direction of their constant speed. also retardation and acceleration are differentiated by virtue of their direction in
fitzgerald
respect to prevailing force
fitzgerald
What is the difference between impulse and momentum?
Manyo
Momentum is the product of the mass of a body and the change in velocity of its motion. ie P=m(v-u)/t (SI unit is kgm/s). it is literally the impact of collision from a moving body. While Impulse is the product of momentum and time. I = Pt (SI unit is kgm) or it is literally the change in momentum
fitzgerald
Or I = m(v-u)
fitzgerald
the tendency of a body to maintain it's inertia motion is called momentum( I believe you know what inertia means) so for a body to be in momentum it will be really hard to stop such body or object..... this is where impulse comes in.. the force applied to stop the momentum of such body is impulse..
Pelumi
Calculation of kinetic and potential energy
K.e=mv² P.e=mgh
Malia
K is actually 1/2 mv^2
Josh
what impulse is given to an a-particle of mass 6.7*10^-27 kg if it is ejected from a stationary nucleus at a speed of 3.2*10^-6ms²? what average force is needed if it is ejected in approximately 10^-8 s?
John
speed=velocity÷time velocity=speed×time=3.2×10^-6×10^-8=32×10^-14m/s impulse [I]=∆momentum[P]=mass×velocity=6.7×10^-27×32×10^-14=214.4×10^-41kg/ms force=impulse÷time=214.4×10^-41÷10^-8=214.4×10^-33N. dats how I solved it.if wrong pls correct me.
Melody
what is sound wave
sound wave is a mechanical longitudinal wave that transfers energy from one point to another
Ogor
its a longitudnal wave which is associted wth compresion nad rearfractions
bhat
what is power
it's also a capability to do something or act in a particular way.
Kayode
Newton laws of motion
Mike
power also known as the rate of ability to do work
Slim
power means capabilty to do work p=w/t its unit is watt or j/s it also represents how much work is done fr evry second
bhat