<< Chapter < Page Chapter >> Page >

Gravitational potential and field strength

A change in gravitational potential (ΔV) is equal to the negative of work by gravity on a unit mass,

Δ V = - E Δ r

For infinitesimal change, we can write the equation,

V = - E r

E = V r

Thus, if we know potential function, we can find corresponding field strength. In words, gravitational field strength is equal to the negative potential gradient of the gravitational field. We should be slightly careful here. This is a relationship between a vector and scalar quantity. We have taken the advantage by considering field in one direction only and expressed the relation in scalar form, where sign indicates the direction with respect to assumed positive reference direction. In three dimensional region, the relation is written in terms of a special vector operator called “grad”.

Further, we can see here that gravitational field – a vector – is related to gravitational potential (scalar) and position in scalar form. We need to resolve this so that evaluation of the differentiation on the right yields the desired vector force. As a matter of fact, we handle this situation in a very unique way. Here, the differentiation in itself yields a vector. In three dimensions, we define an operator called “grad” as :

grad = x i + y j + z k

where " x ” is partial differentiation operator with respect to "x". This is same like normal differentiation except that it considers other dimensions (y,z) constant. In terms of “grad”,

E = - grad V

Gravitational potential and self energy of a rigid body

Gravitational potential energy of a particle of mass “m” is related to gravitational potential of the field by the equation,

U = m V

This relation is quite handy in calculating potential energy and hence “self energy” of a system of particles or a rigid body. If we recall, then we calculated “self energy” of a system of particles by a summation process of work in which particles are brought from infinity one by one. The important point was that the gravitational force working on the particle kept increasing as more and more particles were assembled. This necessitated to calculate work by gravitational forces due to each particle present in the region, where they are assembled.

Now, we can use the “known” expressions of gravitational potential to determine gravitational potential energy of a system, including rigid body. We shall derive expressions of potential energy for few regular geometric bodies in the next module. One of the important rigid body is spherical shell, whose gravitational potential is given as :

Gravitational potential due to spherical shell

Gravitational potential at points inside and outside a spherical shell.

For a point inside or on the shell of radius “a”,

V = - G M a

This means that potential inside the shell is constant and is equal to potential at the surface.

For a point outside shell of radius “a” (at a linear distance, “r” from the center of shell) :

V = - G M r

This means that shell behaves as a point mass for potential at a point outside the shell. These known expressions allow us to calculate gravitational potential energy of the spherical shell as explained in the section below.

Self energy of a spherical shell

The self potential energy is equal to work done by external force in assembling the shell bit by bit. Since zero gravitational potential energy is referred to infinity, the work needs to be calculated for a small mass at a time in bringing the same from infinity.

In order to calculate work, we draw a strategy in which we consider that some mass has already been placed symmetrically on the shell. As such, it has certain gravitational potential. When a small mass “dm” is brought, the change in potential energy is given by :

Self energy of a spherical shell

Self energy is equal to work in bringing particles one by one from the infinity.

U = V m = G m R m

We can determine total potential energy of the shell by integrating the expressions on either side of the equation,

U = G R m m

Taking constants out from the integral on the right side and taking into account the fact that initial potential energy of the shell is zero, we have :

U = G R [ m 2 2 ] 0 M

U = G M 2 2 R

This is total potential energy of the shell, which is equal to work done in bringing mass from infinity to form the shell. This expression, therefore, represents the self potential energy of the shell.

In the same manner, we can also find “self energy” of a solid sphere, if we know the expression for the gravitational potential due to a solid sphere.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask