# 4.8 Gravitational potential due to rigid body

 Page 1 / 2
Gravitational potential to rigid body at a point is scalar sum of potentials due to elemental mass.

We have derived expression for gravitational potential due to point mass of mass, “M”, as :

$V=-\frac{GM}{r}$

We can find expression of potential energy for real bodies by considering the same as aggregation of small elements, which can be treated as point mass. We can, then, combine the potential algebraically to find the potential due to the body.

The derivation is lot like the derivation of gravitational field strength. There is, however, one important difference. Derivation of potential expression combines elemental potential – a scalar quantity. As such, we can add contributions from elemental parts algebraically without any consideration of direction. Indeed, it is a lot easier proposition.

Again, we are interested in finding gravitational potential due to a solid sphere, which is generally the shape of celestial bodies. As discussed earlier in the course, a solid sphere is composed of spherical shells and spherical shell, in turn, is composed of circular rings of different radii. Thus, we proceed by determining expression of potential from ring -->spherical shell -->solid sphere.

## Gravitational potential due to a uniform circular ring

We need to find gravitational potential at a point “P” lying on the central axis of the ring of mass “M” and radius “a”. The arrangement is shown in the figure. We consider a small mass “dm” on the circular ring. The gravitational potential due to this elemental mass is :

$dV=-\frac{Gdm}{PA}=-\frac{Gdm}{{\left({a}^{2}+{r}^{2}\right)}^{\frac{1}{2}}}$

We can find the sum of the contribution by other elements by integrating above expression. We note that all elements on the ring are equidistant from the point, “P”. Hence, all elements of same mass will contribute equally to the potential. Taking out the constants from the integral,

$⇒V=-\frac{G}{{\left({a}^{2}+{r}^{2}\right)}^{\frac{1}{2}}}\underset{0}{\overset{M}{\int }}dm$

$⇒V=-\frac{GM}{{\left({a}^{2}+{r}^{2}\right)}^{\frac{1}{2}}}=-\frac{GM}{y}$

This is the expression of gravitational potential due to a circular ring at a point on its axis. It is clear from the scalar summation of potential due to elemental mass that the ring needs not be uniform. As no directional attribute is attached, it is not relevant whether ring is uniform or not? However, we have kept the nomenclature intact in order to correspond to the case of gravitational field, which needs to be uniform for expression as derived. The plot of gravitational potential for circular ring is shown here as we move away from the center.

Check : We can check the relationship of potential, using differential equation that relates gravitational potential and field strength.

$⇒E=-\frac{dV}{dr}=\frac{d}{dr}\left\{\frac{GM}{{\left({a}^{2}+{r}^{2}\right)}^{\frac{1}{2}}}\right\}$

$⇒E=GMx-\frac{1}{2}X{\left({a}^{2}+{r}^{2}\right)}^{-\frac{1}{2}-1}X2r$

$⇒E=-\frac{GMr}{{\left({a}^{2}+{r}^{2}\right)}^{\frac{3}{2}}}$

The result is in excellent agreement with the expression derived for gravitational field strength due to a uniform circular ring.

## Gravitational potential due to thin spherical shell

The spherical shell of radius “a” and mass “M” can be considered to be composed of infinite numbers of thin rings. We consider one such thin ring of infinitesimally small thickness “dx” as shown in the figure. We derive the required expression following the sequence of steps as outlined here :

List the application of projectile
pls explain what is dimension of 1in length and -1 in time ,what's is there difference between them
what are scalars
show that 1w= 10^7ergs^-1
what's lamin's theorems and it's mathematics representative
if the wavelength is double,what is the frequency of the wave
What are the system of units
A stone propelled from a catapult with a speed of 50ms-1 attains a height of 100m. Calculate the time of flight, calculate the angle of projection, calculate the range attained
58asagravitasnal firce
Amar
water boil at 100 and why
what is upper limit of speed
what temperature is 0 k
Riya
0k is the lower limit of the themordynamic scale which is equalt to -273 In celcius scale
Mustapha
How MKS system is the subset of SI system?
which colour has the shortest wavelength in the white light spectrum
if x=a-b, a=5.8cm b=3.22 cm find percentage error in x
x=5.8-3.22 x=2.58

#### Get Jobilize Job Search Mobile App in your pocket Now! By Robert Murphy By Cath Yu By OpenStax By Rachel Woolard By By Savannah Parrish By Madison Christian By Brooke Delaney By OpenStax By Rebecca Butterfield