<< Chapter < Page Chapter >> Page >

Time interval

Problem : The angular position of a point on a flywheel is given by the relation :

θ (rad) = - 0.025 t 2 + 0.01 t

Find the time (in seconds) when flywheel comes to a stop.

Solution : The speed of the particle is :

ω = θ t = - 0.025 X 2 t + 0.1

When flywheel comes to a standstill, ω = 0,

0 = - 0.025 X 2 t + 0.1

t = 0.1 0.025 = 100 25 = 4 s

Got questions? Get instant answers now!

Problem : The magnitude of deceleration of the motion of a point on a rotating disk is equal to the acceleration due to gravity (10 m / s 2 ). The point is at a linear distance 10 m from the center of the disk. If initial speed is 40 m/s in anti-clockwise direction, then find the time for the point to return to its position.

Solution : The disk first rotates in anti-clockwise direction till its speed becomes zero and then the disk turns back to move in clockwise direction. In order to analyze the motion, we first convert linear quantities to angular quantities as :

ω i = v i r = 40 10 = 4 rad / s

α = a T r = 10 10 = 1 rad / s 2

When the point returns to its initial position, the total displacement is zero. Applying equation of motion for angular displacement, we have :

θ = ω i t + 1 2 α t 2

0 = 4 X t - 1 2 X 1 X t 2

t 2 8 t = 0

t t 8 = 0

t = 0 o r 8 s

The zero time corresponds to initial position. The time of return to initial position, therefore, is 8 seconds.

Got questions? Get instant answers now!

Angular displacement

Problem : A disk initially rotating at 80 rad/s is slowed down with a constant deceleration of magnitude 4 rad / s 2 . What angle (rad) does the disk rotate before coming to rest ?

Solution : Initial and final angular velocities and angular acceleration are given. We can use ω = ω 0 + α t to determine the time disk takes to come to stop. Here,

ω 0 = 80 rad / s , α = 4 rad / s 2

0 = 80 - 4 t t = 20 s

Using equation, θ = ω 0 t + 1 2 α t 2 , we have :

θ = 80 X 20 - 1 2 X 4 X 20 2 = 1600 - 800 = 800 rad

Got questions? Get instant answers now!

Problem : The initial angular velocity of a point (in radian) on a rotating disk is 0.5 rad/s. The disk is subjected to a constant acceleration of 0. 2 rad / s 2 . in the direction opposite to the angular velocity. Determine the angle (in radian) through which the point moves in third second.

Solution : Here, we need to be careful as the point reverses its direction in the third second ! For ω = 0,

ω = ω 0 + α t 0 = 0.5 - 0.2 t t = 0.5 0.2 = 2.5 s

Thus the disk stops at t = 2.5 second. In this question, we are to find the angle (in rad) through which the point moves in third second – not the displacement. The figure here qualitatively depicts the situation. In the third second, the point moves from B to C and then from C to D. The displacement in third second is BOD, whereas the angle moved in the third second is |BOC| + |DOC|. Where,

∠BOC = displacement between 2 and 2.5 seconds.

∠DOC = displacement between 2.5 and 3 seconds.

Angle measurement

The angular velocity at the end of 2 seconds is :

ω = 0.5 - 0.2 x 2 = 0.1 rad / s

BOC = ω t - 1 2 α t 2 BOC = 0.1 X 0.5 - 1 2 X 0.2 X 0.5 2 BOC = 0.05 - 0.1 X 0.25 = 0.05 - 0.025 = 0.025 rad

The angular velocity at the end of 2.5 seconds is zero. Hence,

DOC = 0 - 1 2 x 0.2 x 0.5 2 BOC = - 0.1 x 0.25 = - 0.025 rad

It means that the point, at t = 3 s, actually returns to the position where it was at t = 2 s. The displacement is, thus, zero.

The total angle moved in third second = |0.025| + |-0.025| = 0.05 rad

Got questions? Get instant answers now!

Problem : The angular velocity of a point (in radian) on a rotating disk is given by |t – 2|, where “t” is in seconds. If the point aligns with the reference direction at time t = 0, then find the quadrant in which the point falls after 5 seconds.

Problem : The area under the angular velocity – time plot and time axis is equal to angular displacement. As required, let us generate angular velocity data for first 5 seconds to enable us draw the requisite plot :

--------------------------------- Time (t) Angular velocity (θ)(s) (rad/s) ---------------------------------0 2 1 12 0 3 14 2 5 3---------------------------------

The angular velocity – time plot is as shown in the figure :

Angular velocity – time plot

The displacement is equal to the area of two triangles :

θ = 1 2 X 2 X 2 + 1 2 X 3 X 3 = 6.5 rad

Thus, the point moves 6.5 rad from the reference direction. Now, one revolution is equal to 2π = 2 x 3.14 = 6.28 rad. The particle is, therefore, in the fourth quadrant with respect to the reference direction.

Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask