<< Chapter < Page
  Physics for k-12   Page 1 / 1
Chapter >> Page >
Solving problems is an essential part of the understanding process.

Questions and their answers are presented here in the module text format as if it were an extension of the treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory. Solution presented is, therefore, treated as the part of the understanding process – not merely a Q/A session. The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put to real time situation.

Hints on problem solving

1: Calculation of acceleration as time rate of change of speed gives tangential acceleration.

2: Calculation of acceleration as time rate of change of velocity gives total acceleration.

3: Tangential acceleration is component of total acceleration along the direction of velocity. Centripetal acceleration is component of acceleration along the radial direction.

4: We exchange between linear and angular quantities by using radius of circle, "r", as multiplication factor. It is helpful to think that linear quantities are bigger than angular quantities. As such, we need to multiply angular quantity by “r” to get corresponding linear quantities and divide a linear quantity by “r” to get corresponding angular quantity.

Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to non-uniform circular motion. The questions are categorized in terms of the characterizing features of the subject matter :

  • Velocity
  • Average total acceleration
  • Total acceleration

Velocity

Problem : A particle, tied to a string, starts moving along a horizontal circle of diameter 2 m, with zero angular velocity and a tangential acceleration given by " 4 t ". If the string breaks off at t = 5 s, then find the speed of the particle with which it flies off the circular path.

Solution : Here, tangential acceleration of the particle at time "t" is given as :

a T = 4 t

We note here that an expression of tangential acceleration (an higher attribute) is given and we are required to find lower order attribute i.e. linear speed. In order to find linear speed, we need to integrate the acceleration function :

a T = đ v đ t = 4 t

đ v = 4 t đ t

Integrating with appropriate limits, we have :

đ v = 4 t đ t = 4 t đ t

v f v i = 4 [ t 2 2 ] 0 5 = 4 X 5 2 2 = 50 m s

v f 0 = 50

v f = 50 m s

Got questions? Get instant answers now!

Average total acceleration

Problem : A particle is executing circular motion. The velocity of the particle changes from (0.1 i + 0.2 j ) m/s to (0.5 i + 0.5 j ) m/s in a period of 1 second. Find the magnitude of average total acceleration.

Solution : The average total acceleration is :

a = Δ v Δ t = ( 0.5 i + 0.5 j ) - ( 0.1 i + 0.2 j ) 1

a = ( 0.4 i + 0.3 j )

The magnitude of acceleration is :

a = ( 0.4 2 + 0.3 2 ) = 0.25 = 0.5 m / s

Got questions? Get instant answers now!

Problem : A particle starting with a speed “v” completes half circle in time “t” such that its speed at the end is again “v”. Find the magnitude of average total acceleration.

Solution : Average total acceleration is equal to the ratio of change in velocity and time interval.

a avg = v 2 v 1 Δ t

From the figure and as given in the question, it is clear that the velocity of the particle has same magnitude but opposite directions.

Circular motion

The speeds of the particle are same at two positions.

v 1 = v

v 2 = - v

Putting in the expression of average total acceleration, we have :

a avg = v 2 v 1 Δ t = v v t

a avg = 2 v t

The magnitude of the average acceleration is :

a avg = 2 v t

Got questions? Get instant answers now!

Total acceleration

Problem : The angular position of a particle (in radian), on circular path of radius 0.5 m, is given by :

θ = - 0.2 t 2 - 0.04

At t = 1 s, find (i) angular velocity (ii) linear speed (iii) angular acceleration (iv) magnitude of tangential acceleration (v) magnitude of centripetal acceleration and (vi) magnitude of total acceleration.

Solution : Angular velocity is :

ω = đ θ đ t = đ đ t 0.2 t 2 0.04 = 0.2 X 2 t = 0.4 t

The angular speed, therefore, is dependent as it is a function in "t". At t = 1 s,

ω = 0.4 rad / s

The magnitude of linear velocity, at t = 1 s, is :

v = ω r = 0.4 X 0.5 = 0.2 m / s

Angular acceleration is :

α = đ ω đ t = đ đ t - 0.4 t = 0.4 rad / s 2

Clearly, angular acceleration is constant and is independent of time.

The magnitude of tangential acceleration is :

a T = α r = 0.4 X 0.5 = 0.2 m / s 2

Tangential acceleration is also constant and is independent of time.

The magnitude of centripetal acceleration is :

a R = ω v = 0.4 t X 0.2 t = 0.08 t 2

At t = 1 s,

a R = 0.08 m / s 2

The magnitude of total acceleration, at t =1 s, is :

a = a T 2 + a R 2

a = { 0.2 2 + 0.08 2 } = 0.215 m / s 2

Got questions? Get instant answers now!

Problem : The speed (m/s) of a particle, along a circle of radius 4 m, is a function in time, "t" as :

v = t 2

Find the total acceleration of the particle at time, t = 2 s.

Solution : The tangential acceleration of the particle is obtained by differentiating the speed function with respect to time,

a T = đ v đ t = đ đ t t 2 = 2 t

The tangential acceleration at time, t = 2 s, therefore, is :

a T = 2 X 2 = 4 m / s 2

The radial acceleration of the particle is given as :

a R = v 2 r

In order to evaluate this expression, we need to know the velocity at the given time, t = 2 s :

v = t 2 = 2 2 = 4 m / s

Putting in the expression of radial acceleration, we have :

a R = v 2 r = 4 2 4 = 4 m / s 2

The total acceleration of the particle is :

a = a T 2 + a R 2 = 4 2 + 4 2 = 4 2 m s 2

Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask