<< Chapter < Page Chapter >> Page >

Exercises

Which of the following is/ are independent of the angle of projection of a projectile :

(a) time of flight

(b) maximum height reached

(c) acceleration of projectile

(d) horizontal component of velocity

The time of flight is determined by considering vertical motion. It means that time of flight is dependent on speed and the angle of projection.

T = 2 u y g = 2 u sin θ g

Maximum height is also determined, considering vertical motion. As such, maximum height also depends on the angle of projection.

H = u y 2 2 g = u 2 sin 2 θ 2 g

Horizontal component, being component of velocity, depends on the angle of projection.

u y = u cos θ

It is only the acceleration of projectile, which is equal to acceleration due to gravity and is, therefore, independent of the angle of projection. Hence, option (c) is correct.

Got questions? Get instant answers now!

Two particles are projected with same initial speeds at 30° and 60° with the horizontal. Then

(a) their maximum heights will be equal

(b) their ranges will be equal

(c) their time of flights will be equal

(d) their ranges will be different

The maximum heights, ranges and time of lights are compared, using respective formula as :

(i)Maximum Height

H 1 H 2 = u 2 sin 2 θ 1 u 2 sin 2 θ 2 = sin 2 30 0 sin 2 60 0 = 1 2 2 3 2 2 = 1 3

Thus, the maximum heights attained by two projectiles are unequal.

(ii) Range :

R 1 R 2 = u 2 sin 2 θ 1 u 2 sin 2 θ 2 = sin 2 60 0 sin 2 120 0 = 3 2 2 3 2 2 = 1 1

Thus, the ranges of two projectiles are equal.

(iii) Time of flight

T 1 T 2 = 2 u sin θ 1 2 u sin θ 2 = sin 30 0 sin 60 0 = 1 2 3 2 = 1 3

Thus, the times of flight of two projectiles are unequal.

Hence, option (b) is correct.

Got questions? Get instant answers now!

The velocity of a projectile during its flight at an elevation of 8 m from the ground is 3 i - 5 j in the coordinate system, where x and y directions represent horizontal and vertical directions respectively. The maximum height attained (H) by the particle is :

a 10.4 m b 8.8 m c 9.25 m d 9 m

We note that vertical component is negative, meaning that projectile is moving towards the ground. The vertical component of velocity 8 m above the ground is

v y = - 5 m / s

The vertical displacement (y) from the maximum height to the point 8 m above the ground as shown in the figure can be obtained, using equation of motion.

Projectile motion

Projectile motion

v y 2 = u y 2 + 2 a y

Considering the point under consideration as origin and upward direction as positive direction.

- 5 2 = 0 + 2 X - 10 X h h = - 25 / 20 = - 1.25 m

Thus, the maximum height, H, attained by the projectile is :

H = 8 + 1.25 = 9.25 m

Hence, option (c) is correct.

Got questions? Get instant answers now!

A projectile is thrown with a given speed so as to cover maximum range (R). If "H" be the maximum height attained during the throw, then the range "R" is equal to :

a 4 H b 3 H c 2 H d H

The projectile covers maximum range when angle of projection is equal to 45°. The maximum range "R" is given by :

R = u 2 sin 2 θ g = u 2 sin 90 0 g = u 2 g

On the other hand, the maximum height attained by the projectile for angle of projection, 45°, is :

H = u y 2 2 g = u 2 sin 2 45 0 2 g = u 2 4 g

Comparing expressions of range and maximum height, we have :

R = 4 H

Hence, option (a) is correct.

Got questions? Get instant answers now!

The speed of a projectile at maximum height is half its speed of projection, "u". The horizontal range of the projectile is :

a 3 u 2 g b 3 u 2 2 g c u 2 4 g d u 2 2 g

The horizontal range of the projectile is given as :

R = u 2 sin 2 θ g

In order to evaluate this expression, we need to know the angle of projection. Now, the initial part of the question says that the speed of a projectile at maximum height is half its speed of projection, "u". However, we know that speed of the projectile at the maximum height is equal to the horizontal component of projection velocity,

u cos θ = u 2 cos θ = 1 2 = cos 30 0 θ = 30 0

The required range is :

R = u 2 sin 2 θ g = u 2 sin 60 0 g = 3 u 2 2 g

Hence, option (b) is correct.

Got questions? Get instant answers now!

Let " T 1 ” and “ T 2 ” be the times of flights of a projectile for projections at two complimentary angles for which horizontal range is "R". The product of times of flight, " T 1 T 2 ”, is equal to :

a R g b R 2 g c 2 R g d R 2 g

Here, we are required to find the product of times of flight. Let " θ " and " 90 0 θ " be two angles of projections. The times of flight are given as :

T 1 = 2 u sin θ g

and

T 2 = 2 u sin 90 0 θ g = 2 u cos θ g

Hence,

T 1 T 2 = 4 u 2 sin θ cos θ g 2

But,

R = 2 u 2 sin θ cos θ g

Combining two equations,

T 1 T 2 = 2 R g

Hence, option (c) is correct.

Got questions? Get instant answers now!

A projectile is projected with a speed "u" at an angle " θ " from the horizontal. The magnitude of average velocity between projection and the time, when projectile reaches the maximum height.

a u cos 2 θ b 3 u 2 cos θ + 1

c 3 u 2 cos θ + 1 2 u d u 3 u 2 cos θ + 1 2

The magnitude of average velocity is given as :

v a v g = Displacement Time

Now the displacement here is OA as shown in the figure. From right angle triangle OAC,

Projectile motion

Projectile motion

O A = O C 2 + B C 2 = { R 2 2 + H 2 } O A = R 2 4 + H 2

Hence, magnitude of average velocity is :

v a v g = R 2 4 + H 2 T

Substituting expression for each of the terms, we have :

v a v g = u 4 sin 2 2 θ 4 g 2 + u 4 sin 4 θ 4 g 2 2 u sin θ g

vavg = u(3 u2cos + 1)/2 v a v g = u 3 u 2 cos θ + 1 2

Hence, option (d) is correct.

Got questions? Get instant answers now!

A projectile is projected at an angle " θ " from the horizon. The tangent of angle of elevation of the highest point as seen from the position of projection is :

a tan θ 4 b tan θ 2 c tan θ d 3 tan θ 2

The angle of elevation of the highest point " θ " is shown in the figure. Clearly,

Projectile motion

Projectile motion

tan α = A C O C = H R 2 = 2 H R

Putting expressions of the maximum height and range of the flight, we have :

tan α = 2 u 2 sin 2 θ X g 2 g X u 2 sin 2 θ = sin 2 θ 2 sin θ cos θ = tan θ 2

Hence, option (b) is correct.

Got questions? Get instant answers now!

In a firing range, shots are taken at different angles and in different directions. If the speed of the bullets is "u", then find the area in which bullets can spread.

a 2 π u 4 g 2 b u 4 g 2 c π u 4 g 2 d π u 2 g 2

The bullets can spread around in a circular area of radius equal to maximum horizontal range. The maximum horizontal range is given for angle of projection of 45°.

R max = u 2 sin 2 θ g = u 2 sin 2 X 45 0 g = u 2 sin 90 0 g = u 2 g

The circular area corresponding to the radius equal to maximum horizontal range is given as :

A = π R max 2 = π X u 2 g 2 = π u 4 g 2

Hence, option (c) is correct.

Got questions? Get instant answers now!

More exercises

Check the module titled " Features of projectile motion (application) to work out more problems.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask