<< Chapter < Page
  Physics for k-12   Page 1 / 1
Chapter >> Page >
Solving problems is an essential part of the understanding process.

Questions and their answers are presented here in the module text format as if it were an extension of the treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory. Solution presented is, therefore, treated as the part of the understanding process – not merely a Q/A session. The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put to real time situation.

Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to the projectile motion. The questions are categorized in terms of the characterizing features of the subject matter :

  • Direction of motion on return
  • Maximum height
  • Equation of projectile motion
  • Change in angles during motion
  • Kinetic energy of a projectile
  • Change in the direction of velocity vector

Direction of motion on return

Problem : A projectile is thrown with a speed of 15 m/s making an angle 60° with horizontal. Find the acute angle, "α", that it makes with the vertical at the time of its return on the ground (consider g = 10 m / s 2 ).

Solution : The vertical component of velocity of the projectile at the return on the ground is equal in magnitude, but opposite in direction. On the other hand, horizontal component of velocity remains unaltered. The figure, here, shows the acute angle that the velocity vector makes with vertical.

Projectile motion

The trajectory is symmetric about the vertical line passing through point of maximum height. From the figure, the acute angle with vertical is :

α = 90 0 - θ = 90 0 - 60 0 = 30 0

Got questions? Get instant answers now!

Maximum height

Problem : Motion of a projectile is described in a coordinate system, where horizontal and vertical directions of the projectile correspond to x and y axes. The velocity of the projectile is 12 i + 20 j m/s at an elevation of 15 m from the point of projection. Find the maximum height attained by the projectile (consider g = 10 m / s 2 ).

Solution : Here, the vertical component of the velocity (20 m/s) is positive. It means that it is directed in positive y-direction and that the projectile is still ascending to reach the maximum height. The time to reach the maximum height is obtained using equation of motion in vertical direction :

v y = u y - g t

0 = 20 - 10 t t = 2 s

Now, the particle shall rise to a vertical displacement given by :

y = u y t - 1 2 g t 2 = 20 x 2 - 5 x 2 2 = 20 m

The maximum height, as measured from the ground, is :

H = 15 + 20 = 35 m

Got questions? Get instant answers now!

Equation of projectile motion

Problem : The equation of a projectile is given as :

y = 3 x - 1 2 g x 2

Then, find the speed of the projection.

Solution : The general equation of projectile is :

y = x tan θ - g x 2 2 u 2 cos 2 θ

On the other hand, the given equation is :

y = 3 x - 1 2 g x 2

Comparing two equations, we have :

tan θ = 3 θ = 60 0

Also,

u 2 cos 2 θ = 1 u 2 = 1 cos 2 θ u 2 = 1 cos 2 60 = 4 u = 2 m / s

Got questions? Get instant answers now!

Change in angles during motion

Problem : A projectile is projected at an angle 60° from the horizontal with a speed of ( 3 + 1 ) m/s. The time (in seconds) after which the inclination of the projectile with horizontal becomes 45° is :

Solution : Let "u" and "v" be the speed at the two specified angles. The initial components of velocities in horizontal and vertical directions are :

u x = u cos 60 0 u y = u sin 60 0

Projectile motion

Similarly, the components of velocities, when projectile makes an angle 45 with horizontal, in horizontal and vertical directions are :

v x = v cos 45 0 v y = v sin 45 0

But, we know that horizontal component of velocity remains unaltered during motion. Hence,

v x = u x v cos 45 0 = u cos 60 0 v = u cos 60 0 cos 45 0

Here, we know initial and final velocities in vertical direction. We can apply v = u +at in vertical direction to know the time as required :

v sin 45 0 = u + a t = u sin 60 0 - g t v cos 45 0 = u cos 60 0 t = u sin 60 0 - v sin 45 0 g

Substituting value of "v" in the equation, we have :

t = u sin 60 0 - u ( cos 60 0 cos 45 0 ) X sin 45 0 g t = u g ( sin 60 0 - cos 60 0 ) t = ( 3 + 1 ) 10 { ( 3 - 1 ) 2 ) t = 2 20 = 0.1 s

Got questions? Get instant answers now!

Kinetic energy of a projectile

Problem : A projectile is thrown with an angle θ from the horizontal with a kinetic energy of K Joule. Find the kinetic energy of the projectile (in Joule), when it reaches maximum height.

Solution : At the time of projection, the kinetic energy is given by :

K = 1 2 m u 2

At the maximum height, vertical component of the velocity is zero. On the other hand, horizontal component of the velocity of the particle does not change. Thus, the speed of the particle, at the maximum height, is equal to the magnitude of the horizontal component of velocity. Hence, speed of the projectile at maximum height is :

v = u cos θ

The kinetic energy at the maximum height, therefore, is :

K = 1 2 m ( u cos θ ) 2

Substituting value of "u" from the expression of initial kinetic energy is :

K = m x 2 x K 2 m cos 2 θ K = K cos 2 θ

Got questions? Get instant answers now!

Change in the direction of velocity vector

Problem : A projectile with a speed of “u” is thrown at an angle of “θ” with the horizontal. Find the speed (in m/s) of the projectile, when it is perpendicular to the direction of projection.

Solution : We need to visualize the direction of the projectile, when its direction is perpendicular to the direction of projection. Further, we may look to determine the direction of velocity in that situation.

The figure, here, shows the direction of velocity for the condition, when the direction of projectile is perpendicular to the direction of projection. From ΔOAB,

Projectile motion

∠OBA = 180 0 - ( 90 0 + θ ) = 90 0 - θ

Thus, the acute angle between projectile and horizontal direction is 90- θ for the given condition. Now, in order to determine the speed, we use the fact that horizontal component of velocity does not change.

v cos ( 90 0 - θ ) = u cos θ v sin θ = u cos θ v = u cot θ

Got questions? Get instant answers now!

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask