<< Chapter < Page
  Physics for k-12   Page 1 / 1
Chapter >> Page >
Solving problems is an essential part of the understanding process.

Questions and their answers are presented here in the module text format as if it were an extension of the treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory. Solution presented is, therefore, treated as the part of the understanding process – not merely a Q/A session. The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put to real time situation.

Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to the projectile motion. The questions are categorized in terms of the characterizing features of the subject matter :

  • Direction of motion on return
  • Maximum height
  • Equation of projectile motion
  • Change in angles during motion
  • Kinetic energy of a projectile
  • Change in the direction of velocity vector

Direction of motion on return

Problem : A projectile is thrown with a speed of 15 m/s making an angle 60° with horizontal. Find the acute angle, "α", that it makes with the vertical at the time of its return on the ground (consider g = 10 m / s 2 ).

Solution : The vertical component of velocity of the projectile at the return on the ground is equal in magnitude, but opposite in direction. On the other hand, horizontal component of velocity remains unaltered. The figure, here, shows the acute angle that the velocity vector makes with vertical.

Projectile motion

The trajectory is symmetric about the vertical line passing through point of maximum height. From the figure, the acute angle with vertical is :

α = 90 0 - θ = 90 0 - 60 0 = 30 0

Got questions? Get instant answers now!

Maximum height

Problem : Motion of a projectile is described in a coordinate system, where horizontal and vertical directions of the projectile correspond to x and y axes. The velocity of the projectile is 12 i + 20 j m/s at an elevation of 15 m from the point of projection. Find the maximum height attained by the projectile (consider g = 10 m / s 2 ).

Solution : Here, the vertical component of the velocity (20 m/s) is positive. It means that it is directed in positive y-direction and that the projectile is still ascending to reach the maximum height. The time to reach the maximum height is obtained using equation of motion in vertical direction :

v y = u y - g t

0 = 20 - 10 t t = 2 s

Now, the particle shall rise to a vertical displacement given by :

y = u y t - 1 2 g t 2 = 20 x 2 - 5 x 2 2 = 20 m

The maximum height, as measured from the ground, is :

H = 15 + 20 = 35 m

Got questions? Get instant answers now!

Equation of projectile motion

Problem : The equation of a projectile is given as :

y = 3 x - 1 2 g x 2

Then, find the speed of the projection.

Solution : The general equation of projectile is :

y = x tan θ - g x 2 2 u 2 cos 2 θ

On the other hand, the given equation is :

y = 3 x - 1 2 g x 2

Comparing two equations, we have :

tan θ = 3 θ = 60 0

Also,

u 2 cos 2 θ = 1 u 2 = 1 cos 2 θ u 2 = 1 cos 2 60 = 4 u = 2 m / s

Got questions? Get instant answers now!

Change in angles during motion

Problem : A projectile is projected at an angle 60° from the horizontal with a speed of ( 3 + 1 ) m/s. The time (in seconds) after which the inclination of the projectile with horizontal becomes 45° is :

Solution : Let "u" and "v" be the speed at the two specified angles. The initial components of velocities in horizontal and vertical directions are :

u x = u cos 60 0 u y = u sin 60 0

Projectile motion

Similarly, the components of velocities, when projectile makes an angle 45 with horizontal, in horizontal and vertical directions are :

v x = v cos 45 0 v y = v sin 45 0

But, we know that horizontal component of velocity remains unaltered during motion. Hence,

v x = u x v cos 45 0 = u cos 60 0 v = u cos 60 0 cos 45 0

Here, we know initial and final velocities in vertical direction. We can apply v = u +at in vertical direction to know the time as required :

v sin 45 0 = u + a t = u sin 60 0 - g t v cos 45 0 = u cos 60 0 t = u sin 60 0 - v sin 45 0 g

Substituting value of "v" in the equation, we have :

t = u sin 60 0 - u ( cos 60 0 cos 45 0 ) X sin 45 0 g t = u g ( sin 60 0 - cos 60 0 ) t = ( 3 + 1 ) 10 { ( 3 - 1 ) 2 ) t = 2 20 = 0.1 s

Got questions? Get instant answers now!

Kinetic energy of a projectile

Problem : A projectile is thrown with an angle θ from the horizontal with a kinetic energy of K Joule. Find the kinetic energy of the projectile (in Joule), when it reaches maximum height.

Solution : At the time of projection, the kinetic energy is given by :

K = 1 2 m u 2

At the maximum height, vertical component of the velocity is zero. On the other hand, horizontal component of the velocity of the particle does not change. Thus, the speed of the particle, at the maximum height, is equal to the magnitude of the horizontal component of velocity. Hence, speed of the projectile at maximum height is :

v = u cos θ

The kinetic energy at the maximum height, therefore, is :

K = 1 2 m ( u cos θ ) 2

Substituting value of "u" from the expression of initial kinetic energy is :

K = m x 2 x K 2 m cos 2 θ K = K cos 2 θ

Got questions? Get instant answers now!

Change in the direction of velocity vector

Problem : A projectile with a speed of “u” is thrown at an angle of “θ” with the horizontal. Find the speed (in m/s) of the projectile, when it is perpendicular to the direction of projection.

Solution : We need to visualize the direction of the projectile, when its direction is perpendicular to the direction of projection. Further, we may look to determine the direction of velocity in that situation.

The figure, here, shows the direction of velocity for the condition, when the direction of projectile is perpendicular to the direction of projection. From ΔOAB,

Projectile motion

∠OBA = 180 0 - ( 90 0 + θ ) = 90 0 - θ

Thus, the acute angle between projectile and horizontal direction is 90- θ for the given condition. Now, in order to determine the speed, we use the fact that horizontal component of velocity does not change.

v cos ( 90 0 - θ ) = u cos θ v sin θ = u cos θ v = u cot θ

Got questions? Get instant answers now!

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask