<< Chapter < Page
  Physics for k-12   Page 1 / 1
Chapter >> Page >
Solving problems is an essential part of the understanding process.

Questions and their answers are presented here in the module text format as if it were an extension of the treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory. Solution presented is, therefore, treated as the part of the understanding process – not merely a Q/A session. The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put to real time situation.

Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to gravitational field. The questions are categorized in terms of the characterizing features of the subject matter :

  • Potential
  • Gravitational field
  • Potential energy
  • Conservation of mechanical energy

Potential

Problem 1 : A particle of mass “m” is placed at the center of a uniform spherical shell of equal mass and radius “R”. Find the potential at a distance “R/4” from the center.

Solution : The potential at the point is algebraic sum of potential due to point mass at the center and spherical shell. Hence,

V = - G m R 4 G m R

V = - 5 G m R

Problem 2 : The gravitational field due to a mass distribution is given by the relation,

E = A x 2

Find gravitational potential at “x”.

Solution : Gravitational field is equal to negative of first differential with respect to displacement in a given direction.

E = - V x

Substituting the given expression for “E”, we have :

A x 2 = - V x

V = A x x 2

Integrating between initial and final values of infinity and “x”,

Δ V = V f V i = - A x x 2

We know that potential at infinity is zero gravitational potential reference. Hence, V i = 0. Let V f = V, then:

V = - A [ - 1 / x ] x = - A [ - 1 x + 0 ] = A x

Gravitational field

Problem 3 : A small hole is created on the surface of a spherical shell of mass, “M” and radius “R”. A particle of small mass “m” is released a bit inside at the mouth of the shell. Describe the motion of particle, considering that this set up is in a region free of any other gravitational force.

Gravitational force

A particle of small mass “m” is released at the mouth of hole.

Solution : The gravitational potential of a shell at any point inside the shell or on the surface of shell is constant and it is given by :

V = - G M R

The gravitational field,”E”, is :

E = - V r

As all quantities in the expression of potential is constant, its differentiation with displacement is zero. Hence, gravitational field is zero inside the shell :

E = 0

It means that there is no gravitational force on the particle. As such, it will stay where it was released.

Potential energy

Problem 4 : A ring of mass “M” and radius “R” is formed with non-uniform mass distribution. Find the minimum work by an external force to bring a particle of mass “m” from infinity to the center of ring.

Solution : The work done in carrying a particle slowly from infinity to a point in gravitational field is equal to potential energy of the “ring-particle” system. Now, Potential energy of the system is :

W F = U = m V

The potential due to ring at its center is independent of mass-distribution. Recall that gravitational potential being a scalar quantity are added algebraically for individual elemental mass. It is given by :

V = - G M r

Hence, required work done,

W F = U = - G M m r

The negative work means that external force and displacement are opposite to each other. Actually, such is the case as the particle is attracted into gravitational field, external force is applied so that particle does not acquire kinetic energy.

Conservation of mechanical energy

Problem 5 : Imagine that a hole is drilled straight through the center of Earth of mass “M” and radius “R”. Find the speed of particle of mass dropped in the hole, when it reaches the center of Earth.

Solution : Here, we apply conservation of mechanical energy to find the required speed. The initial kinetic energy of the particle is zero.

K i = 0

On the other hand, the potential energy of the particle at the surface is :

U i = m V i = G M m R

Let “v” be the speed of the particle at the center of Earth. Its kinetic energy is :

K f = 1 2 m v 2

The potential energy of the particle at center of Earth is :

U f = m V f = - 3 G M m 2 R

Applying conservation of mechanical energy,

K i + U i = K f + U f

0 G M m R = 1 2 m v 2 - 3 G M m 2 R

v = G M R

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask