<< Chapter < Page Chapter >> Page >
Artificial satellites are the backbone of modern communication systems.

The motion of a satellite or space-station is a direct consequence of Earth’s gravity. Once launched in the appropriate orbit, these man-made crafts orbit around Earth without any propulsion. In this module, we shall study basics of satellite motion without going into details of the technology. Also, we shall develop analysis framework of artificial satellite, which can as well be extended to analysis of natural satellite like our moon. For the analysis here, we shall choose a simple framework of “two – body” system, one of which is Earth.

We should be aware that gravity is not the only force of gravitation working on the satellite, particularly if satellite is far off from Earth’s surface. But, Earth being the closest massive body, its gravitational attraction is dominant to the extent of excluding effect of other bodies. For this reason, our analysis of satellite motion as “isolated two body system” is good first approximation.

Mass of artificial satellite is negligible in comparison to that of Earth. The “center of mass” of the “two body system” is about same as the center of Earth. There is possibility of different orbits, which are essentially elliptical with different eccentricity. A satellite close to the surface up to 2000 km describes nearly a circular trajectory. In this module, we shall confine ourselves to the analysis of satellites having circular trajectory only.

Speed of the satellite

Satellites have specific orbital speed to move around Earth, depending on its distance from the center of Earth. The satellite is launched from the surface with the help of a rocket, which parks it in particular orbit with a tangential speed appropriate for that orbit. Since satellite is orbiting along a circular path, there is requirement for the provision of centripetal force, which is always directed towards the center of orbit. This requirement of centripetal force is met by the force of gravity. Hence,

Satellite

Gravitational attraction provides for the requirement of centripetal force for circular motion of satellite.

G M m r 2 = m v 2 r

v = G M r

where “M” is Earth’s mass and “r” is linear distance of satellite from the "center of mass" of Earth.

The important thing to realize here are : (i) orbital speed of the satellite is independent of the mass of the satellite (ii) a satellite at a greater distance moves with lesser velocity. As the product “GM” appearing in the numerator of the expression is constant, we can see that

v 1 r

This conclusion is intuitive in the sense that force of gravitation is lesser as we move away from Earth’s surface and the corresponding centripetal force as provided by gravity is smaller. As such, orbital speed is lesser.

This fact has compounding effect on the time period of the satellite. In the first place, a satellite at a greater distance has to travel a longer distance in one revolution than the satellite closer to Earth’s surface. At the same time, orbital speed is lesser as we move away. It is, then, imperative that time period of revolution increases for satellite at greater distance.

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask