<< Chapter < Page Chapter >> Page >

Rotation of coaxial tube and rod

The rod slips away from the axis of rotation.

We may question why the same does not happen with a particle of rigid body in rotation. We know that rigid body does not allow relative displacement of particles. The particles are in place due to intermolecular forces operating on them. The tendency of the particle to move away from the axis of rotation is counteracted by the net inter-molecular force on the particle that acts towards the center of rotation. In this case, the inter-molecular force meets the requirement of centripetal force for circular motion of the particle about the axis of rotation.

Now, we must check about external torque on the system. The system lies on the smooth horizontal plane. It means that there is no net vertical force (weights of the bodies are balanced by normal forces). The force at the axis does not constitute torque as its moment arm is zero. We, therefore, conclude that there is no external torque on the system and that the problem can be analyzed in terms of conservation of angular momentum.

In the beginning, when the system is given initial angular velocity, the system has certain angular momentum, “ L i ”. During the motion, however, rod begins to slip away from the axis. As such, mass distribution of the system changes. In other words, MI of the system changes. But, the angular momentum of the system (" L f ") remains unchanged as there is no external torque on the system.

Now, applying conservation of angular momentum in vertical direction :

L i = L f I i ω i = I f ω f

Here, ω i = ω . According to theorem of parallel axes, the initial MI of the system, “ I i ”, is :

I i = MI of the system about perpendicular at mid-point + mass of the system x square of perpendicular distance between the axes

I i = { ( 2 M L 2 12 + 2 M ( L 2 ) 2 }

I i = M L 2 6 + M L 2 2 = 2 M L 2 3

Note that we have used "2M" to account for both tube and rod. Now, we again employ theorem of parallel axes in order to obtain MI of the system for the final position, when the rod just slips out of the tube. Final MI of the system, “ I f ”, is :

Rotation of coaxial tube and rod

The rod slips away from the axis of rotation.

I f = { ( M L 2 12 + M ( L 2 ) 2 + M L 2 12 + M ( 3 L 2 ) 2 }

I f = M L 2 6 + M L 2 4 + 9 M L 2 4

I f = 2 M L 2 + 3 M L 2 + 27 M L 2 12 = 8 M L 2 3

Putting values in the equation of conservation of angular momentum, we have :

2 M L 2 3 x ω = 8 M L 2 3 x ω f

ω f = ω 4

QBA (Question based on above) : A thin rod is placed coaxially within a thin hollow tube, which lies on a smooth horizontal table. The rod and tube are of same mass “M” and length “L”. The rod is free to move within the tube. The system of tube and rod is given an initial angular velocity, “ω”, about a vertical axis passing through the center of the system. Considering negligible friction between surfaces, find the angular velocity of the rod, when it just slips out of the tube.

Hint : The question differs in one respect to earlier question. The axis of rotation here is vertical axis through the center of the system instead of the axis at the end of the system. This changes the calculation of MIs before and after. Answer is “ω/7”.

Questions & Answers

A stone propelled from a catapult with a speed of 50ms-1 attains a height of 100m. Calculate the time of flight, calculate the angle of projection, calculate the range attained
Samson Reply
58asagravitasnal firce
water boil at 100 and why
isaac Reply
what is upper limit of speed
Riya Reply
what temperature is 0 k
0k is the lower limit of the themordynamic scale which is equalt to -273 In celcius scale
How MKS system is the subset of SI system?
Clash Reply
which colour has the shortest wavelength in the white light spectrum
Mustapha Reply
how do we add
Jennifer Reply
if x=a-b, a=5.8cm b=3.22 cm find percentage error in x
Abhyanshu Reply
x=5.8-3.22 x=2.58
what is the definition of resolution of forces
Atinuke Reply
what is energy?
James Reply
Ability of doing work is called energy energy neither be create nor destryoed but change in one form to an other form
highlights of atomic physics
can anyone tell who founded equations of motion !?
Ztechy Reply
n=a+b/T² find the linear express
Donsmart Reply
Sultan Reply
Moment of inertia of a bar in terms of perpendicular axis theorem
Sultan Reply
How should i know when to add/subtract the velocities and when to use the Pythagoras theorem?
Yara Reply
Centre of mass of two uniform rods of same length but made of different materials and kept at L-shape meeting point is origin of coordinate
Rama Reply

Get the best Physics for k-12 course in your pocket!

Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?