<< Chapter < Page Chapter >> Page >
Vertical motion typifies motion in which a body is under constant acceleration and only possible change in direction is by virtue of reversal of the direction of motion

Vertical motion under gravity is a specific case of one dimensional motion with constant acceleration. Here, acceleration is always directed in vertically downward direction and its magnitude is "g".

As the force due to gravity may be opposite to the direction of motion, there exists the possibility that the body under force of gravity reverses its direction. It is, therefore, important to understand that the quantities involved in the equations of motion may evaluate to positive or negative values with the exception of time (t). We must appropriately assign sign to various inputs that goes into the equation and correctly interpret the result with reference to the assumed positive direction. Further, some of them evaluate to two values one for one direction and another of reversed direction.

As pointed out earlier in the course, we must also realize that a change in reference direction may actually change the sign of the attributes, but their physical interpretation remains same. What it means that an attribute such as velocity, for example, can be either 5 m/s or -5 m/s, conveying the same velocity. The interpretation must be done with respect to the assigned positive reference direction.

Velocity

Let us analyze the equation "v = u + at" for the vertical motion under gravity with the help of an example. We consider a ball thrown upwards from ground with an initial speed of 30 m/s. In the frame of reference with upward direction as positive,

u = 30 m / s and a = - g = - 10 m / s 2

Vertical motion under gravity

The ball reaches maximum height when its velocity becomes zero

Putting this value in the equation, we have :

v = 30 – 10 t

The important aspect of this equation is that velocity evaluates to both positive and negative values; positive for upward motion and negative for downward motion. The final velocity (v) is positive for t<3 seconds, zero for t = 3 seconds and negative for t>3 seconds. The total time taken for the complete up and down journey is 3 (for upward motion) + 3 (for downward motion) = 6 seconds.

The velocities of the ball at successive seconds are :

---------------------------------- Time (t) Final velocity (v)in seconds in m/s ----------------------------------0.0 30 1.0 202.0 10 3.0 04.0 -10 5.0 -206.0 -30 ----------------------------------

The corresponding velocity – time plot looks like as shown in the figure.

Velocity – time plot

We notice following important characteristics of the motion :

1: The velocity at the maximum height is zero (v=0).

2: The time taken by the ball to reach maximum height is obtained as :

For v = 0 , v = u + a t = u - g t = 0 u = g t t = u g

3: The ball completely regains its speed when it returns to ground, but the motion is directed in the opposite direction i.e.

v = - u

4: The time taken for the complete round trip is :

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask