<< Chapter < Page Chapter >> Page >
Solving problems is an essential part of the understanding

Questions and their answers are presented here in the module text format as if it were an extension of the treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory. Solution presented is, therefore, treated as the part of the understanding process – not merely a Q/A session. The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put to real time situation.

Hints on solving problems

  1. Though acceleration is constant and hence one – dimensional, but the resulting motion can be one, two or three dimensional – depending on the directional relation between velocity and acceleration.
  2. Identify : what is given and what is required. Establish relative order between given and required attribute.
  3. Use differentiation method to get a higher order attribute in the following order : displacement (position vector) → velocity → acceleration.
  4. Use integration method to get a lower order attribute in the following order : acceleration → velocity → displacement (position vector).

Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to the motion with constant acceleration. The questions are categorized in terms of the characterizing features of the subject matter :

  • Average velocity
  • Differentiation and Integration method
  • Components of constant acceleration
  • Rectilinear motion with constant acceleration
  • Equations of motion

Average velocity

Problem : A particle moves with an initial velocity “ u ” and a constant acceleration “ a ”. What is average velocity in the first “t” seconds?

Solution : The particle is moving with constant acceleration. Since directional relation between velocity and acceleration is not known, the motion can have any dimension. For this reason, we shall be using vector form of equation of motion. Now, the average velocity is given by :

v a = Δ r Δ t

The displacement for motion with constant acceleration is given as :

Δ r = u t + 1 2 a t 2

Thus, average velocity is :

v a = Δ r Δ t = u t + 1 2 a t 2 t = u + 1 2 a t

Got questions? Get instant answers now!

Differentiation and integration methods

Problem : A particle is moving with a velocity 2 i + 2 t j in m/s. Find (i) acceleration and (ii) displacement at t = 1 s.

Solution : Since velocity is given as a function in “t”, we can find acceleration by differentiating the function with respect to time.

a = đ đ t ( 2 i + 2 t j ) = 2 j

Thus, acceleration is constant and is directed in y-direction. However, as velocity and acceleration vectors are not along the same direction, the motion is in two dimensions. Since acceleration is constant, we can employ equation of motion for constant acceleration in vector form,

Δ r = u t + 1 2 a t 2 Δ r = ( 2 i + 2 t j ) t + 1 2 x 2 j x t 2

For t = 1 s

Δ r = ( 2 i + 2 x 1 j ) x 1 + 1 2 x 2 j x 1 2 Δ r = 2 i + 3 j

Note 1 : We should remind ourselves that we obtained displacement using equation of motion for constant acceleration. Had the acceleration been variable, then we would have used integration method to find displacement.

Note 2 : A constant acceleration means that neither its magnitude or direction is changing. Therefore, we may be tempted to think that a constant acceleration is associated with one dimensional motion. As we see in the example, this is not the case. A constant acceleration can be associated with two or three dimensional motion as well. It is the relative directions of acceleration with velocity that determines the dimension of motion – not the dimension of acceleration itself.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask