<< Chapter < Page Chapter >> Page >
Total work done by conservative force in a closed path motion is zero.

Forces differ in one important aspect. They differ in the way they transfer energy from an object. All forces are consistent and similar in their character in transferring energy "from" an object in motion. They actually differ in their ability to return the energy "to" the object, when motion is reversed. One class of force conserves energy in the form of potential energy and transfers the same when motion is reversed. Additionally, these forces return the energy to object in equal measure with respect to the energy taken from the object. This means that motion of an object interacted by conservative force(s), involving reversal of motion end up regaining its initial motion. The class of forces that conserve energy for reuse is called "conservative" forces. Similarly, the class of forces that do not conserve energy for reuse are called "non-conservative" force.

We have noticed that forces such as gravitation force, elastic force, electromagnetic forces etc conform to the requirement of energy reuse as decribed above. Hence, these forces are conservative forces.

Understanding conservative force

In order to understand the perspective of conservative force, we consider a block of mass "m", which is projected up a smooth incline. Here, interactiion involves gravitational force. The force due to gravity, opposing the motion, is mg sinθ along the incline. Let us consider that the block travels a total length "L" along the incline before returning to the point of projection.

A block projected on a smooth incline plane

The force due to gravity does the work on the block.

Work done by gravity during motion in upward direction is :

W G(up) = - m g L sin θ

Work done by gravity during motion in downward direction is :

W G(down) = m g L sin θ

Thus, we find that :

W G(up) = - W G(down)

This condition, when stated in general terms, specify whether the interacting force is conservative or not. In general, let W 1 and W 2 be the work done by the interacting force during motion and reversal of motion respectively. Then, the inetracting force is conservative force, if :

W 1 = - W 2

Work done along closed path is zero :

W = W 1 + W 2 = 0

We summarize important points about the motion, which is interacted by conservative force :

  • The object regains initial motion (kinetic energy) on return to initial position in a closed path motion.
  • Conservative force transfers energy "to" and "from" an object during a closed path motion in equal measure.
  • Conservative force tansfers energy between kinetic energy of the object in motion and the potential energy of the system interating with the object.
  • Work done by conservative force is equal to work done by it on reversal of motion.
  • Total work done by conservative force in a closed path motion is zero.

Understanding non-conservative force

It is also inferred from the discussion above that the other class of forces known as "non-conservative" force do not meet the requirement as needed for being conservative. They transfer energy "from" the object in motion just like conservative force, but they do not transfer this energy "to" the potential energy of the system to regain it during reverse motion. Instead, they transfer the energy to the system in an energy form which can not be used by the force to transfer energy back to the object in motion. Friction is one such non-conservative force.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask