<< Chapter < Page
  Physics for k-12   Page 1 / 1
Chapter >> Page >
Solving problems is an essential part of the understanding process.

Questions and their answers are presented here in the module text format as if it were an extension of the treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory. Solution presented is, therefore, treated as the part of the understanding process – not merely a Q/A session. The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put to real time situation.

Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to work - kinetic energy theorem. The questions are categorized in terms of the characterizing features of the subject matter :

  • Constant force
  • Variable force
  • Maximum kinetic energy

Constant force

Problem 1 : A bullet traveling at 100 m/s just pierces a wooden plank of 5 m. What should be the speed (in m/s) of the bullet to pierce a wooden plank of same material, but having a thickness of 10m?

Solution : Final speed and hence final kinetic energy are zero in both cases. From "work- kinetic energy" theorem, initial kinetic energy is equal to work done by the force resisting the motion of bullet. As the material is same, the resisting force is same in either case. If subscript "1" and "2" denote the two cases respectively, then :

For 5 m wood plank :

0 - 1 2 m v 1 2 = - F x 1 1 2 m 100 2 = F X 5

For 10 m wood plank :

0 - 1 2 m v 2 2 = - F x 2 1 2 m v 2 2 = F X 10

Taking ratio of two equations, we have :

v 2 2 100 2 = F x 10 F x 5 = 2

v 2 2 = 2 x 10000 = 20000

v 2 = 141.4 m / s

Problem 2 : A block of 2 kg is attached to one end of a string that passes over a pulley as shown in the figure. The block is pulled by a force of 50 N, applied at the other end of the string. If change in the kinetic energy of the block is 60 J, then find the work done by the tension in the string.

Block hanging from pulley

Solution : We need to know tension and the displacement to find the work by tension. We note here that change in kinetic energy is given. Using "work - kinetic energy" theorem, we find work by the net force - not by the tension alone - on the block :

W = Δ K = 60 J

In order to find tension and net force on the block, we draw free body diagram as shown in the figure.

Free body diagram

T = 50 N

and

F y = T - m g F y = 50 - 2 x 10 = 30 N

Let the vertical displacement be "y". Then, the work done by the net force is :

30 y = 60 y = 2 m

Now, we have values of tension and displacement of the block. Hence, work done by the tension in the string :

W T = T x y = 50 x 2 = 100 J

Note that this example illustrates two important aspects of analysis, using "work - kinetic energy" theorem : (i) work equated to change in kinetic energy is work by net force and (ii) if details like the value of tension and displacement are not known, then we need to employ force analysis to find quantities used for the calculation of work by individual force.

Problem 3 : A block of 1 kg, initially at 10 m/s, moves along a straight line on a rough horizontal plane. If its kinetic energy reduces by 80 % in 10 meters, then find coefficient of kinetic friction between block and horizontal surface.

Solution : From the given data, we can find the change in kinetic energy and hence work done by friction (which is the only force in this case). We do not consider weight or normal force as they are perpendicular to the direction of displacement. Here, K f = 0.2 K i . Applying "Work - kinetic energy" theorem,

W = K f - K i = 0.2 K i - K i = - 0.8 K i

Now,

K i = 1 2 m v i 2 = 1 2 x 1 x 100 = 50 J

Combining two equations,

W = - 0.8 x 50 = - 40 J

Now, work by the friction is related to friction as :

W = - F K r

and friction is related to normal force as :

F K = μ K N

Combining two equations, we have :

W = - μ K N r μ K = - W N r = - W m g r μ K = - - 40 1 x 10 x 10 = 0.4

Variable force

Problem 4 : Velocity - time plot of the motion of a particle of 1 kg from t = 2s to t = 6s, is as shown in figure. FInd the work done by all the forces (in Joule) on the particle during this time interval.

Velocity - time plot

Solution : We are required to find work by all the forces, operating on the particle. No information about force is given. However, states of motion at end points can be read from the given plot. The "work - kinetic energy" theorem is independent of intermediate detail. From the plot. we have : v i = 2 m/s and v f = 6 m/s. Now, applying theorem for the end conditions, we get the work by all forces, acting on the particle :

W = K f - K i

W = 1 2 m ( v f 2 - v i 2 ) W = 1 2 x 1 x ( 6 2 - 2 2 ) = 0.5 x ( 36 - 4 ) W = 16 J

Problem 5 : The displacement of a particle of 0.1 kg moving along x-axis is a function of time as x (in meters) = 2 t 2 + t. Find the work done (in Joule) by the net force on the particle during time interval t = 0 to t = 5 s.

Solution : Here, displacement is given as a function of time. This enables us to determine speed at given time instants. This, in turn, enables us to determine change in kinetic energy and hence work by the net force on the particle. Now,

v = x t = 4 t + 1

Speed at t = 0,

v i = 1 m / s

Speed at t = 5 s,

v f = 21 m / s

Applying work-kinetic energy theorem, we get work done by the net force as :

W = K f - K i

W = 1 2 m ( v f 2 - v i 2 ) W = 1 2 x 0.1 x ( 21 2 - 1 2 ) = 22 J

Maximum kinetic energy

Problem 6 : A particle of 0.1 kg is at rest when x = 0. A force given by the function F(x) = ( 9 - x 2 ) N, is applied on the particle. If displacement is in meters, then find the maximum kinetic energy (in Joule) of the particle for x>0.

Solution : The given force is a function of displacement. We can use integral form to determine work. This work can, then, be equated to the change in kinetic energies, using "work - kinetic energy" theorem. Once we have the relation of kinetic energy as a function of "x", we can differentiate and apply the condition for maximum kinetic energy. Now,

W = F ( x ) x = ( 9 - x 2 ) x W = 9 x - x 3 3

The particle is initially at rest. It means that its initial kinetic energy is zero. Now, applying "work - kinetic energy" theorem, we have :

K f - K i = K f = K K = 9 x - x 3 3

K t = 9 - 3 x 2 3 = 9 - x 2

For K t = 0 , we have :

x = - 3 m or + 3 m

But for x>0, x = 3 m. Second derivative of kinetic enregy should be negative for this value of "x = 3" so that kinetic energy at this point is maximum.

2 K t 2 = - 2 x = - 2 x 3 = - 6

Thus, kinetic energy at x = 3 m is maximum for x>0. It is given by :

K = 9 x - x 3 3 = 9 x 3 - 3 3 3 = 18 J

Questions & Answers

Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
identify a demand and a supply curve
Salome Reply
i don't know
Parul
there's a difference
Aryan
Demand curve shows that how supply and others conditions affect on demand of a particular thing and what percent demand increase whith increase of supply of goods
Israr
Hi Sir please how do u calculate Cross elastic demand and income elastic demand?
Abari
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask