<< Chapter < Page
  Physics for k-12   Page 1 / 1
Chapter >> Page >
Solving problems is an essential part of the understanding process.

Questions and their answers are presented here in the module text format as if it were an extension of the treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory. Solution presented is, therefore, treated as the part of the understanding process – not merely a Q/A session. The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put to real time situation.

Representative problems and their solutions

We discuss problems, which highlight certain aspects of the scalar vector product. For this reason, questions are categorized in terms of the characterizing features of the subject matter :

  • Angle between two vectors
  • Condition of perpendicular vectors
  • Component as scalar product
  • Nature of scalar product
  • Scalar product of a vector with itself
  • Evaluation of dot product

Angle between two vectors

Problem : Find the angle between vectors 2 i + j k and i k .

Solution : The cosine of the angle between two vectors is given in terms of dot product as :

cos θ = a . b ab

Now,

a . b = ( 2 i + j - k ) . ( 2 i - k )

Ignoring dot products of different unit vectors (they evaluate to zero), we have :

a . b = 2 i . i + ( - k ) . ( - k ) = 2 + 1 = 3 a = ( 2 2 + 1 2 + 1 2 ) = 6 b = ( 1 2 + 1 2 ) = 2 ab = 6 x 2 = ( 12 ) = 2 3

Putting in the expression of cosine, we have :

cos θ = a . b ab = 3 2 3 = 3 2 = cos 30 ° θ = 30 °

Got questions? Get instant answers now!

Condition of perpendicular vectors

Problem : Sum and difference of two vectors a and b are perpendicular to each other. Find the relation between two vectors.

Solution : The sum a + b and difference a - b are perpendicular to each other. Hence, their dot product should evaluate to zero.

Sum and difference of two vectors

Sum and difference of two vectors are perpendicular to each other.

( a + b ) . ( a - b ) = 0

Using distributive property,

a . a - a . b + b . a - b . b = 0

Using commutative property, a.b = b.a , Hence,

a . a - b . b = 0 a 2 - b 2 = 0 a = b

It means that magnitudes of two vectors are equal. See figure below for enclosed angle between vectors, when vectors are equal :

Sum and difference of two vectors

Sum and difference of two vectors are perpendicular to each other, when vectors are equal.

Got questions? Get instant answers now!

Component as scalar product

Problem : Find the components of vector 2 i + 3 j along the direction i + j .

Solution : The component of a vector “ a ” in a direction, represented by unit vector “ n ” is given by dot product :

a n = a . n

Thus, it is clear that we need to find the unit vector in the direction of i + j . Now, the unit vector in the direction of the vector is :

n = i + j | i + j |

Here,

| i + j | = ( 1 2 + 1 2 ) = 2

Hence,

n = 1 2 x ( i + j )

The component of vector 2 i + 3 j in the direction of “ n ” is :

a n = a . n = ( 2 i + 3 j ) . 1 2 x ( i + j )

a n = 1 2 x ( 2 i + 3 j ) . ( i + j ) a n = 1 2 x ( 2 x 1 + 3 x 1 ) a n = 5 2

Got questions? Get instant answers now!

Nature of scalar product

Problem : Verify vector equality B = C , if A.B = A.C .

Solution : The given equality of dot products is :

A . B = A . C

The equality will result if B = C . We must, however, understand that dot product is not a simple algebraic product of two numbers (read magnitudes). The angle between two vectors plays a role in determining the magnitude of the dot product. Hence, it is entirely possible that vectors B and C are different yet their dot products with common vector A are equal.

We can attempt this question mathematically as well. Let θ 1 and θ 2 be the angles for first and second pairs of dot products. Then,

A . B = A . C

AB cos θ 1 = AC cos θ 2

If θ 1 = θ 2 , then B = C . However, if θ 1 θ 2 , then B C .

Got questions? Get instant answers now!

Scalar product of a vector with itself

Problem : If | a + b | = | a b |, then find the angle between vectors a and b .

Solution : A question that involves modulus or magnitude of vector can be handled in specific manner to find information about the vector (s). The specific identity that is used in this circumstance is :

A . A = A 2

We use this identity first with the sum of the vectors ( a + b ),

( a + b ) . ( a + b ) = | a + b | 2

Using distributive property,

a . a + b . a + a . b + b . b = a 2 + b 2 + 2 a b cos θ = | a + b | 2 | a + b | 2 = a 2 + b 2 + 2 a b cos θ

Similarly, using the identity with difference of the vectors (a-b),

| a - b | 2 = a 2 + b 2 - 2 a b cos θ

It is, however, given that :

| a + b | = | a - b |

Squaring on either side of the equation,

| a + b | 2 = | a - b | 2

Putting the expressions,

a 2 + b 2 + 2 a b cos θ = a 2 + b 2 - 2 a b cos θ 4 a b cos θ = 0 cos θ = 0 θ = 90 °

Note : We can have a mental picture of the significance of this result. As given, the magnitude of sum of two vectors is equal to the magnitude of difference of two vectors. Now, we know that difference of vectors is similar to vector sum with one exception that one of the operand is rendered negative. Graphically, it means that one of the vectors is reversed.

Reversing one of the vectors changes the included angle between two vectors, but do not change the magnitudes of either vector. It is, therefore, only the included angle between the vectors that might change the magnitude of resultant. In order that magnitude of resultant does not change even after reversing direction of one of the vectors, it is required that the included angle between the vectors is not changed. This is only possible, when included angle between vectors is 90°. See figure.

Sum and difference of two vectors

Magnitudes of Sum and difference of two vectors are same when vectors at right angle to each other.

Got questions? Get instant answers now!

Problem : If a and b are two non-collinear unit vectors and | a + b | = √3, then find the value of expression :

( a - b ) . ( 2 a + b )

Solution : The given expression is scalar product of two vector sums. Using distributive property we can expand the expression, which will comprise of scalar product of two vectors a and b .

( a - b ) . ( 2 a + b ) = 2 a . a + a . b - b . 2 a + ( - b ) . ( - b ) = 2 a 2 - a . b - b 2

( a - b ) . ( 2 a + b ) = 2 a 2 - b 2 - a b cos θ

We can evaluate this scalar product, if we know the angle between them as magnitudes of unit vectors are each 1. In order to find the angle between the vectors, we use the identity,

A . A = A 2

Now,

| a + b | 2 = ( a + b ) . ( a + b ) = a 2 + b 2 + 2 a b cos θ = 1 + 1 + 2 x 1 x 1 x cos θ

| a + b | 2 = 2 + 2 cos θ

It is given that :

| a + b | 2 = ( 3 ) 2 = 3

Putting this value,

2 cos θ = | a + b | 2 - 2 = 3 - 2 = 1

cos θ = 1 2 θ = 60 °

Using this value, we now proceed to find the value of given identity,

( a - b ) . ( 2 a + b ) = 2 a 2 - b 2 - a b cos θ = 2 x 1 2 - 1 2 - 1 x 1 x cos 60 °

( a - b ) . ( 2 a + b ) = 1 2

Got questions? Get instant answers now!

Evaluation of dot product

Problem : In an experiment of light reflection, if a , b and c are the unit vectors in the direction of incident ray, reflected ray and normal to the reflecting surface, then prove that :

b = a - 2 ( a . c ) c

Solution : Let us consider vectors in a coordinate system in which “x” and “y” axes of the coordinate system are in the direction of reflecting surface and normal to the reflecting surface respectively as shown in the figure.

Reflection

Angle of incidence is equal to angle of reflection.

We express unit vectors with respect to the incident and reflected as :

a = sin θ i - cos θ j b = sin θ i + cos θ j

Subtracting first equation from the second equation, we have :

b - a = 2 cos θ j b = a + 2 cos θ j

Now, we evaluate dot product, involving unit vectors :

a . c = 1 x 1 x cos ( 180 ° - θ ) = - cos θ

Substituting for cosθ, we have :

b = a - 2 ( a . c ) c

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask