<< Chapter < Page Chapter >> Page >
Representation of numerical values is closely associating with error.

We have already discussed different types of errors and how to handle them. Surprisingly, however, we hardly ever mention about error while assigning values to different physical quantities. It is the general case. As a matter of fact, we should communicate error appropriately, as there is provision to link error with the values we write.

We can convey existence of error with the last significant digit of the numerical values that we assign. Implicitly, we assume certain acceptable level of error with the last significant digit. If we need to express the actual range of error, based on individual set of observations, then we should write specific range of error explicitly as explained in earlier module.

We are not always aware that while writing values, we are conveying the precision of measurement as well. Remember that random error is linked with the precision of measurement; and, therefore, to be precise we should follow rules that retain the precision of measurement through the mathematical operations that we carry out with the values.

Context of values

Before we go in details of the scheme, rules and such other aspects of writing values to quantities, we need to clarify the context of writing values.

We write values of a quantity on the assumption that there is no systematic error involved. This assumption is, though not realized fully in practice, but is required; as otherwise how can we write value, if we are not sure of its accuracy. If we have doubt on this count, there is no alternative other than to improve measurement quality by eliminating reasons for systematic error. Once, we are satisfied with the measurement, we are only limited to reporting the extent of random error.

Another question that needs to be answered is that why to entertain “uncertain” data (error) at all. Why not we ignore doubtful digit altogether? We have seen that eliminating doubtful digit results in greater inaccuracy (refer module on “errors in measurement”). Measuring value with suspect digit is more “accurate” even though it carries the notion of error. This is the reason why we prefer to live with error rather than without it.

We should also realize that error is associated with the smallest division of the scale i.e. its least count. Error is about reading the smallest division – not about estimating value between two consecutive markings of smallest divisions.

Significant figures

Significant figures comprises of digits, which are known reliably and one last digit in the sequence, which is not known reliably. We take an example of the measurement of length by a vernier scale. The measurement of a piece of rod is reported as 5.37 cm. This value comprises of three digits, “5”, “3” and “7”. All three digits are significant as the same are measured by the instrument. The value indicates, however, that last digit is “uncertain”. We know that least count of vernier scale is 10 - 4 m i.e 10 - 2 cm i.e 0.01 cm. There is a possibility of error, which is equal to half the least count i.e. 0.005 cm. The reported value may, therefore, lie between 5.365 cm and 5.375 cm.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask