<< Chapter < Page Chapter >> Page >

v = d r d t = d x d t i + d y d t j v = v x i + v y j v = | v | = ( v x 2 + v y 2 )

Similarly, one dimensional motion (For example : x – direction) is described by one of the components of velocity.

v = d r d t = d x d t i v = v x i v = | v | = v x

Few words of caution

Study of kinematics usually brings about closely related concepts, terms and symbols. It is always desirable to be precise and specific in using these terms and symbols. Following list of the terms along with their meaning are given here to work as reminder :

1: Position vector : r : a vector specifying position and drawn from origin to the point occupied by point object

2: Distance : s : length of actual path : not treated as the magnitude of displacement

3: Displacement : AB or Δ r : a vector along the straight line joining end points A and B of the path : its magnitude, | AB | or |Δ r | is not equal to distance, s.

4: Difference of position vector : Δ r : equal to displacement, AB . Direction of Δ r is not same as that of position vector ( r ).

5: Magnitude of displacement : | AB | or |Δ r |: length of shortest path.

6: Average speed : v a : ratio of distance and time interval : not treated as the magnitude of average velocity

7: Speed : v : first differential of distance with respect to time : equal to the magnitude of velocity, | v |

8: Average velocity : v a : ratio of displacement and time interval : its magnitude, | v a | is not equal to average speed, v a .

9: Velocity : v : first differential of displacement or position vector with respect to time

Summary

The paragraphs here are presented to highlight the similarities and differences between the two important concepts of speed and velocity with a view to summarize the discussion held so far.

1: Speed is measured without direction, whereas velocity is measured with direction. Speed and velocity both are calculated at a position or time instant. As such, both of them are independent of actual path. Most physical measurements, like speedometer of cars, determine instantaneous speed. Evidently, speed is the magnitude of velocity,

v = | v |

2: Since, speed is a scalar quantity, it can be plotted on a single axis. For this reason, tangent to distance – time curve gives the speed at that point of the motion. As d s = v X d t , the area under speed – time plot gives distance covered between two time instants.

3: On the other hand, velocity requires three axes to be represented on a plot. It means that a velocity – time plot would need 4 dimensions to be plotted, which is not possible on three dimensional Cartesian coordinate system. A two dimensional velocity and time plot is possible, but is highly complicated to be drawn.

4: One dimensional velocity can be treated as a scalar magnitude with appropriate sign to represent direction. It is, therefore, possible to draw one dimension velocity – time plot.

5: Average speed involves the length of path (distance), whereas average velocity involves shortest distance (displacement). As distance is either greater than or equal to the magnitude of displacement,

s | Δ r | and v a | v a |

Exercises

The position vector of a particle (in meters) is given as a function of time as :

r = 2 t i + 2 t 2 j

Determine the time rate of change of the angle “θ” made by the velocity vector with positive x-axis at time, t = 2 s.

Solution : It is a two dimensional motion. The figure below shows how velocity vector makes an angle "θ" with x-axis of the coordinate system. In order to find the time rate of change of this angle "θ", we need to express trigonometric ratio of the angle in terms of the components of velocity vector. From the figure :

Velocity of a particle in two dimensions

The velocity has two components.

tan θ = v y v x

As given by the expression of position vector, its component in coordinate directions are :

x = 2 t and y = 2 t 2

We obtain expression of the components of velocity in two directions by differentiating "x" and "y" components of position vector with respect to time :

v x = 2 and v y = 4 t

Putting in the trigonometric function, we have :

tan θ = v y v x = 4 t 2 = 2 t

Since we are required to know the time rate of the angle, we differentiate the above trigonometric ratio with respect to time as,

sec 2 θ d θ d t = 2

( 1 + tan 2 θ ) d θ d t = 2 ( 1 + 4 t 2 ) d θ d t = 2 d θ d t = 2 ( 1 + 4 t 2 )

At t = 2 s,

d θ d t = 2 ( 1 + 4 x 2 2 ) = 2 17 rad / s

Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask