<< Chapter < Page Chapter >> Page >

In the AP ® Physics 2 course, you will continue your journey by studying fluid dynamics, which explains why rising smoke curls and twists and how the body regulates blood flow. The next stop is thermodynamics, the study of heat transfer—energy in transit—that can be used to do work. Basic physical laws govern how heat transfers and its efficiency. Then you will learn more about electric phenomena as you delve into electromagnetism. An electric current produces a magnetic field; similarly, a magnetic field produces a current. This phenomenon, known as magnetic induction, is essential to our technological society. The generators in cars and nuclear plants use magnetism to generate a current. Other devices that use magnetism to induce currents include pickup coils in electric guitars, transformers of every size, certain microphones, airport security gates, and damping mechanisms on sensitive chemical balances. From electromagnetism you will continue your journey to optics, the study of light. You already know that visible light is the type of electromagnetic waves to which our eyes respond. Through vision, light can evoke deep emotions, such as when we view a magnificent sunset or glimpse a rainbow breaking through the clouds. Optics is concerned with the generation and propagation of light. The quantum mechanics, atomic physics, and nuclear physics are at the end of your journey. These areas of physics have been developed at the end of the 19th and early 20th centuries and deal with submicroscopic objects. Because these objects are smaller than we can observe directly with our senses and generally must be observed with the aid of instruments, parts of these physics areas may seem foreign and bizarre to you at first. However, we have experimentally confirmed most of the ideas in these areas of physics.

AP ® Physics is a challenging course. After all, you are taking physics at the introductory college level. You will discover that some concepts are more difficult to understand than others; most students, for example, struggle to understand rotational motion and angular momentum or particle-wave duality. The AP ® curriculum promotes depth of understanding over breadth of content, and to make your exploration of topics more manageable, concepts are organized around seven major themes called the Big Ideas that apply to all levels of physical systems and interactions between them (see web diagram below). Each Big Idea identifies enduring understandings (EU), essential knowledge (EK), and illustrative examples that support key concepts and content. Simple descriptions define the focus of each Big Idea.

  • Big Idea 1: Objects and systems have properties.
  • Big Idea 2: Fields explain interactions.
  • Big Idea 3: The interactions are described by forces.
  • Big Idea 4: Interactions result in changes.
  • Big Idea 5: Changes are constrained by conservation laws.
  • Big Idea 6: Waves can transfer energy and momentum.
  • Big Idea 7: The mathematics of probability can to describe the behavior of complex and quantum mechanical systems.

Doing college work is not easy, but completion of AP ® classes is a reliable predictor of college success and prepares you for subsequent courses. The more you engage in the subject, the easier your journey through the curriculum will be. Bring your enthusiasm to class every day along with your notebook, pencil, and calculator. Prepare for class the day before, and review concepts daily. Form a peer study group and ask your teacher for extra help if necessary. The AP ® lab program focuses on more open-ended, student-directed, and inquiry-based lab investigations designed to make you think, ask questions, and analyze data like scientists. You will develop critical thinking and reasoning skills and apply different means of communicating information. By the time you sit for the AP ® exam in May, you will be fluent in the language of physics; because you have been doing real science, you will be ready to show what you have learned. Along the way, you will find the study of the world around us to be one of the most relevant and enjoyable experiences of your high school career.

Irina Lyublinskaya, PhD
Professor of Science Education

To the ap® physics teacher

The AP ® curriculum was designed to allow instructors flexibility in their approach to teaching the physics courses. College Physics for AP ® Courses helps you orient students as they delve deeper into the world of physics. Each chapter includes a Connection for AP ® Courses introduction that describes the AP ® Physics Big Ideas, enduring understandings, and essential knowledge addressed in that chapter.

Each section starts with specific AP ® learning objectives and includes essential concepts, illustrative examples, and science practices, along with suggestions for applying the learning objectives through take-home experiments, virtual lab investigations, and activities and questions for preparation and review. At the end of each section, students will find the Test Prep for AP ® courses with multiple-choice and open-response questions addressing AP® learning objectives to help them prepare for the AP ® exam.

College Physics for AP ® Courses has been written to engage students in their exploration of physics and help them relate what they learn in the classroom to their lives outside of it. Physics underlies much of what is happening today in other sciences and in technology. Thus, the book content includes interesting facts and ideas that go beyond the scope of the AP ® course. The AP ® Connection in each chapter directs students to the material they should focus on for the AP ® exam, and what content—although interesting—is not part of the AP ® curriculum. Physics is a beautiful and fascinating science. It is in your hands to engage and inspire your students to dive into an amazing world of physics, so they can enjoy it beyond just preparation for the AP ® exam.

Irina Lyublinskaya, PhD
Professor of Science Education

conceptmap
The concept map showing major links between Big Ideas and Enduring Understandings is provided below for visual reference.

Questions & Answers

the diagram of the digestive system
Assiatu Reply
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
what is cell divisoin?
Aron Reply
Diversity of living thing
ISCONT
what is cell division
Aron Reply
Cell division is the process by which a single cell divides into two or more daughter cells. It is a fundamental process in all living organisms and is essential for growth, development, and reproduction. Cell division can occur through either mitosis or meiosis.
AI-Robot
What is life?
Allison Reply
life is defined as any system capable of performing functions such as eating, metabolizing,excreting,breathing,moving,Growing,reproducing,and responding to external stimuli.
Mohamed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask