<< Chapter < Page Chapter >> Page >

The average intensity of an electromagnetic wave I ave size 12{I rSub { size 8{"ave"} } } {} can also be expressed in terms of the magnetic field strength by using the relationship B = E / c size 12{B= {E} slash {c} } {} , and the fact that ε 0 = 1 / μ 0 c 2 size 12{ε rSub { size 8{0} } = {1} slash {μ rSub { size 8{0} } } c rSup { size 8{2} } } {} , where μ 0 size 12{μ rSub { size 8{0} } } {} is the permeability of free space. Algebraic manipulation produces the relationship

I ave = cB 0 2 0 , size 12{I rSub { size 8{"ave"} } = { { ital "cB" rSub { size 8{0} } rSup { size 8{2} } } over {2μ rSub { size 8{0} } } } } {}

where B 0 size 12{B rSub { size 8{0} } } {} is the maximum magnetic field strength.

One more expression for I ave size 12{I rSub { size 8{"ave"} } } {} in terms of both electric and magnetic field strengths is useful. Substituting the fact that c B 0 = E 0 size 12{c cdot B rSub { size 8{0} } =E rSub { size 8{0} } } {} , the previous expression becomes

I ave = E 0 B 0 0 . size 12{I rSub { size 8{"ave"} } = { {E rSub { size 8{0} } B rSub { size 8{0} } } over {2μ rSub { size 8{0} } } } } {}

Whichever of the three preceding equations is most convenient can be used, since they are really just different versions of the same principle: Energy in a wave is related to amplitude squared. Furthermore, since these equations are based on the assumption that the electromagnetic waves are sinusoidal, peak intensity is twice the average; that is, I 0 = 2 I ave size 12{I rSub { size 8{0} } =2I rSub { size 8{"ave"} } } {} .

Calculate microwave intensities and fields

On its highest power setting, a certain microwave oven projects 1.00 kW of microwaves onto a 30.0 by 40.0 cm area. (a) What is the intensity in W/m 2 size 12{"W/m" rSup { size 8{2} } } {} ? (b) Calculate the peak electric field strength E 0 size 12{E rSub { size 8{0} } } {} in these waves. (c) What is the peak magnetic field strength B 0 size 12{B rSub { size 8{0} } } {} ?

Strategy

In part (a), we can find intensity from its definition as power per unit area. Once the intensity is known, we can use the equations below to find the field strengths asked for in parts (b) and (c).

Solution for (a)

Entering the given power into the definition of intensity, and noting the area is 0.300 by 0.400 m, yields

I = P A = 1 . 00 kW 0 . 300 m × 0 . 400 m . size 12{I= { {P} over {A} } = { {1 "." "00"" kW"} over {0 "." "300 m"×0 "." "400 m"} } } {}

Here I = I ave size 12{I=I rSub { size 8{"ave"} } } {} , so that

I ave = 1000 W 0 . 120 m 2 = 8 . 33 × 10 3 W/m 2 . size 12{I rSub { size 8{"ave"} } = { {"1000"" W"} over {0 "." "120"" m" rSup { size 8{2} } } } =8 "." "33"×"10" rSup { size 8{3} } " W/m" rSup { size 8{2} } } {}

Note that the peak intensity is twice the average:

I 0 = 2 I ave = 1 . 67 × 10 4 W / m 2 . size 12{I rSub { size 8{0} } =2I rSub { size 8{"ave"} } =1 "." "67" times "10" rSup { size 8{4} } {W} slash {m rSup { size 8{2} } } } {}

Solution for (b)

To find E 0 size 12{E rSub { size 8{0} } } {} , we can rearrange the first equation given above for I ave size 12{I rSub { size 8{"ave"} } } {} to give

E 0 = 2 I ave 0 1/2 . size 12{E rSub { size 8{0} } = left ( { {2I rSub { size 8{"ave"} } } over {ce rSub { size 8{0} } } } right ) rSup { size 8{ {1}wideslash {2} } } } {}

Entering known values gives

E 0 = 2 ( 8 . 33 × 10 3 W/m 2 ) ( 3 . 00 × 10 8 m/s ) ( 8.85 × 10 12 C 2 / N m 2 ) = 2.51 × 10 3 V/m . alignl { stack { size 12{E rSub { size 8{0} } = sqrt { { {2 \( 8 "." "33"´"10" rSup { size 8{3} } " W/m" rSup { size 8{2} } \) } over { \( 3 "." "00"´"10" rSup { size 8{8} } " m/s" \) \( 8 "." "85"´"10" rSup { size 8{ +- 2} } C rSup { size 8{2} } /N cdot m rSup { size 8{2} } \) } } } } {} #=2 "." "51"´"10" rSup { size 8{3} } " V/m" "." {} } } {}

Solution for (c)

Perhaps the easiest way to find magnetic field strength, now that the electric field strength is known, is to use the relationship given by

B 0 = E 0 c . size 12{B rSub { size 8{0} } = { {E rSub { size 8{0} } } over {c} } } {}

Entering known values gives

B 0 = 2.51 × 10 3 V/m 3.0 × 10 8 m/s = 8.35 × 10 6 T . alignl { stack { size 12{B rSub { size 8{0} } = { {2 "." "51"´"10" rSup { size 8{3} } " V/m"} over {3 "." 0´"10" rSup { size 8{8} } " m/s"} } } {} #=8 "." "35"´"10" rSup { size 8{-6} } " T" "." {} } } {}

Discussion

As before, a relatively strong electric field is accompanied by a relatively weak magnetic field in an electromagnetic wave, since B = E / c size 12{B= {E} slash {c} } {} , and c size 12{c} {} is a large number.

Got questions? Get instant answers now!

Test prep for ap courses

An old microwave oven outputs only half the electric field it used to. How much longer does it take to cook things in this microwave oven?

  1. Four times as long
  2. Twice as long
  3. Half the time
  4. One fourth the time

(a)

Got questions? Get instant answers now!

Describe at least two improvements you could make to a radar set to make it more sensitive (able to detect things at longer ranges). Explain why these would work.

Got questions? Get instant answers now!

Section summary

  • The energy carried by any wave is proportional to its amplitude squared. For electromagnetic waves, this means intensity can be expressed as
    I ave = 0 E 0 2 2 , size 12{I rSub { size 8{"ave"} } = { {ce rSub { size 8{0} } E rSub { size 8{0} } rSup { size 8{2} } } over {2} } } {}

    where I ave size 12{I rSub { size 8{"ave"} } } {} is the average intensity in W/m 2 size 12{"W/m" rSup { size 8{2} } } {} , and E 0 size 12{E rSub { size 8{0} } } {} is the maximum electric field strength of a continuous sinusoidal wave.

  • This can also be expressed in terms of the maximum magnetic field strength B 0 size 12{B rSub { size 8{0} } } {} as
    I ave = cB 0 2 0 size 12{I rSub { size 8{"ave"} } = { { ital "cB" rSub { size 8{0} } rSup { size 8{2} } } over {2m rSub { size 8{0} } } } } {}

    and in terms of both electric and magnetic fields as

    I ave = E 0 B 0 0 . size 12{I rSub { size 8{"ave"} } = { {E rSub { size 8{0} } B rSub { size 8{0} } } over {2m rSub { size 8{0} } } } } {}
  • The three expressions for I ave size 12{I rSub { size 8{"ave"} } } {} are all equivalent.

Questions & Answers

how to create a software using Android phone
Wiseman Reply
how
basra
what is the difference between C and C++.
Yan Reply
what is software
Sami Reply
software is a instructions like programs
Shambhu
what is the difference between C and C++.
Yan
yes, how?
Hayder
what is software engineering
Ahmad
software engineering is a the branch of computer science deals with the design,development, testing and maintenance of software applications.
Hayder
who is best bw software engineering and cyber security
Ahmad
Both software engineering and cybersecurity offer exciting career prospects, but your choice ultimately depends on your interests and skills. If you enjoy problem-solving, programming, and designing software syste
Hayder
what's software processes
Ntege Reply
I haven't started reading yet. by device (hardware) or for improving design Lol? Here. Requirement, Design, Implementation, Verification, Maintenance.
Vernon
I can give you a more valid answer by 5:00 By the way gm.
Vernon
it is all about designing,developing, testing, implementing and maintaining of software systems.
Ehenew
hello assalamualaikum
Sami
My name M Sami I m 2nd year student
Sami
what is the specific IDE for flutter programs?
Mwami Reply
jegudgdtgd my Name my Name is M and I have been talking about iey my papa john's university of washington post I tagged I will be in
Mwaqas Reply
yes
usman
how disign photo
atul Reply
hlo
Navya
hi
Michael
yes
Subhan
Show the necessary steps with description in resource monitoring process (CPU,memory,disk and network)
samuel Reply
What is software engineering
Tafadzwa Reply
Software engineering is a branch of computer science directed to writing programs to develop Softwares that can drive or enable the functionality of some hardwares like phone , automobile and others
kelvin
if any requirement engineer is gathering requirements from client and after getting he/she Analyze them this process is called
Alqa Reply
The following text is encoded in base 64. Ik5ldmVyIHRydXN0IGEgY29tcHV0ZXIgeW91IGNhbid0IHRocm93IG91dCBhIHdpbmRvdyIgLSBTdGV2ZSBXb3puaWFr Decode it, and paste the decoded text here
Julian Reply
what to do you mean
Vincent
hello
ALI
how are you ?
ALI
What is the command to list the contents of a directory in Unix and Unix-like operating systems
George Reply
how can i make my own software free of cost
Faizan Reply
like how
usman
hi
Hayder
The name of the author of our software engineering book is Ian Sommerville.
Doha Reply
what is software
Sampson Reply
the set of intruction given to the computer to perform a task
Noor
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask