<< Chapter < Page Chapter >> Page >

Problem-solving suggestion

Note that the forms of the constants h = 4 . 14 × 10 –15 eV s size 12{h =" 4" "." "14 " times " 10" rSup { size 8{"–15"} } " eV " cdot " s"} {} and hc = 1240 eV nm size 12{ ital "hc" =" 1240 eV " cdot " nm"} {} may be particularly useful for this section’s Problems and Exercises.

Test prep for ap courses

The mass of a proton is 1.67 × 10 –27 kg. If a proton has the same momentum as a photon with a wavelength of 325 nm, what is its speed?

  1. 2.73 × 10 –3 m/s
  2. 0.819 m/s
  3. 1.22 m/s
  4. 2.71 × 10 4 m/s

(c)

Got questions? Get instant answers now!

A strip of metal foil with a mass of 5.00 × 10 –7 kg is suspended in a vacuum and exposed to a pulse of light. The velocity of the foil changes from zero to 1.00 × 10 –3 m/s in the same direction as the initial light pulse, and the light pulse is entirely reflected from the surface of the foil. Given that the wavelength of the light is 450 nm, and assuming that this wavelength is the same before and after the collision, how many photons in the pulse collide with the foil?

Got questions? Get instant answers now!

Test prep for ap courses

In an experiment in which the Compton effect is observed, a “gamma ray” photon with a wavelength of 5.00 × 10 –13 m scatters from an electron. If the change in the electron energy is 1.60 × 10 –15 J, what is the wavelength of the photon after the collision with the electron?

  1. 4.95 × 10 –13 m
  2. 4.98 × 10 –13 m
  3. 5.02 × 10 –13 m
  4. 5.05 × 10 –13 m

(c)

Got questions? Get instant answers now!

Consider two experiments involving a metal sphere with a radius of 2.00 μm that is suspended in a vacuum. In one experiment, a pulse of N photons reflects from the surface of the sphere, causing the sphere to acquire momentum. In a second experiment, an identical pulse of photons is completely absorbed by the sphere, so that the sphere acquires momentum. Identify each type of collision as either elastic or inelastic, and, assuming that the change in the photon wavelength can be ignored, use linear momentum conservation to derive the expression for the momentum of the sphere in each experiment.

Got questions? Get instant answers now!

Section summary

  • Photons have momentum, given by p = h λ size 12{p = { {h} over {λ} } } {} , where λ size 12{λ} {} is the photon wavelength.
  • Photon energy and momentum are related by p = E c size 12{p = { {E} over {c} } } {} , where E = hf = hc / λ size 12{E = ital "hf"= ital "hc"/λ } {} for a photon.

Conceptual questions

Which formula may be used for the momentum of all particles, with or without mass?

Got questions? Get instant answers now!

Is there any measurable difference between the momentum of a photon and the momentum of matter?

Got questions? Get instant answers now!

Why don’t we feel the momentum of sunlight when we are on the beach?

Got questions? Get instant answers now!

Problems&Exercises

(a) Find the momentum of a 4.00-cm-wavelength microwave photon. (b) Discuss why you expect the answer to (a) to be very small.

(a) 1.66 × 10 32 kg m/s size 12{1 "." "66" times "10" rSup { size 8{ - "32"} } `"kg" cdot "m/s"} {}

(b) The wavelength of microwave photons is large, so the momentum they carry is very small.

Got questions? Get instant answers now!

(a) What is the momentum of a 0.0100-nm-wavelength photon that could detect details of an atom? (b) What is its energy in MeV?

Got questions? Get instant answers now!

(a) What is the wavelength of a photon that has a momentum of 5 . 00 × 10 29 kg m/s size 12{5 "." "00" times "10" rSup { size 8{ - "29"} } `"kg" cdot "m/s"} {} ? (b) Find its energy in eV.

(a) 13.3 μm

(b) 9 . 38 × 10 -2 eV

Got questions? Get instant answers now!

(a) A γ size 12{γ} {} -ray photon has a momentum of 8 . 00 × 10 21 kg m/s size 12{8 "." "00" times "10" rSup { size 8{ - "21"} } `"kg" cdot "m/s"} {} . What is its wavelength? (b) Calculate its energy in MeV.

Got questions? Get instant answers now!

(a) Calculate the momentum of a photon having a wavelength of 2 . 50 μm size 12{2 "." "50"" μm"} {} . (b) Find the velocity of an electron having the same momentum. (c) What is the kinetic energy of the electron, and how does it compare with that of the photon?

(a) 2 . 65 × 10 28 kg m/s size 12{2 "." "65" times "10" rSup { size 8{ - "28"} } `"kg" cdot "m/s"} {}

(b) 291 m/s

(c) electron 3 . 86 × 10 26 J size 12{3 "." "86" times "10" rSup { size 8{ - "26"} } " J"} {} , photon 7 . 96 × 10 20 J size 12{7 "." "96" times "10" rSup { size 8{ - "20"} } " J"} {} , ratio 2 . 06 × 10 6 size 12{2 "." "06" times "10" rSup { size 8{6} } } {}

Got questions? Get instant answers now!

Repeat the previous problem for a 10.0-nm-wavelength photon.

Got questions? Get instant answers now!

(a) Calculate the wavelength of a photon that has the same momentum as a proton moving at 1.00% of the speed of light. (b) What is the energy of the photon in MeV? (c) What is the kinetic energy of the proton in MeV?

(a) 1 . 32 × 10 13 m size 12{1 "." "32" times "10" rSup { size 8{ - "13"} } " m"} {}

(b) 9.39 MeV

(c) 4.70 × 10 2 MeV size 12{4 "." "70" times "10" rSup { size 8{ - 2} } " MeV"} {}

Got questions? Get instant answers now!

(a) Find the momentum of a 100-keV x-ray photon. (b) Find the equivalent velocity of a neutron with the same momentum. (c) What is the neutron’s kinetic energy in keV?

Got questions? Get instant answers now!

Take the ratio of relativistic rest energy, E = γmc 2 mc 2 , to relativistic momentum, p = γ mu size 12{p=γ ital "mu"} {} , and show that in the limit that mass approaches zero, you find E / p = c size 12{E/p=c} {} .

E = γmc 2 mc 2 and P = γmu , so

E P = γmc 2 γmu = c 2 u .

As the mass of particle approaches zero, its velocity u will approach c , so that the ratio of energy to momentum in this limit is

lim m →0 E P = c 2 c = c

which is consistent with the equation for photon energy.

Got questions? Get instant answers now!

Construct Your Own Problem

Consider a space sail such as mentioned in [link] . Construct a problem in which you calculate the light pressure on the sail in N/m 2 size 12{"N/m" rSup { size 8{2} } } {} produced by reflecting sunlight. Also calculate the force that could be produced and how much effect that would have on a spacecraft. Among the things to be considered are the intensity of sunlight, its average wavelength, the number of photons per square meter this implies, the area of the space sail, and the mass of the system being accelerated.

Got questions? Get instant answers now!

Unreasonable Results

A car feels a small force due to the light it sends out from its headlights, equal to the momentum of the light divided by the time in which it is emitted. (a) Calculate the power of each headlight, if they exert a total force of 2 . 00 × 10 2 N size 12{2 "." "00" times "10" rSup { size 8{ - 2} } " N"} {} backward on the car. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

(a) 3 . 00 × 10 6 W size 12{3 "." "00" times "10" rSup { size 8{6} } " W"} {}

(b) Headlights are way too bright.

(c) Force is too large.

Got questions? Get instant answers now!
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask