<< Chapter < Page Chapter >> Page >
The first schematic is labeled geometric optics focus. It shows an edge-on view of a thin lens that is vertical. The lens is represented by a thin ellipse. Two parallel horizontal rays impinge upon the lens from the left. One ray goes through the upper edge of the lens and is deviated downward at about a thirty degree angle below the horizontal. The other ray goes through the lower edge of the lens and is deviated upward at about a thirty degree angle above the horizontal. These two rays cross a point that is labeled focal point. The second schematic is labeled wave optics focus. It is similar to the first schematic, except that the rays do not quite cross at the focal point. Instead, they diverge away from each other at the same angle as they approached each other. The region of closest approach for the lines is called the focal region.
(a) In geometric optics, the focus is a point, but it is not physically possible to produce such a point because it implies infinite intensity. (b) In wave optics, the focus is an extended region.

Test prep for ap courses

What is the relationship between the width ( W ) of the central diffraction maximum formed through a circular aperture and the size ( S ) of the aperture?

  1. W increases as S increases.
  2. W decreases as S increases.
  3. W can increase or decrease as S decreases.
  4. W can neither increase nor decrease as S decreases.

(b)

Got questions? Get instant answers now!

Light from two sources passes through a circular aperture to form images on a screen. State the Rayleigh criterion for the images to be just resolvable and draw a figure to visually explain it.

Got questions? Get instant answers now!

Section summary

  • Diffraction limits resolution.
  • For a circular aperture, lens, or mirror, the Rayleigh criterion states that two images are just resolvable when the center of the diffraction pattern of one is directly over the first minimum of the diffraction pattern of the other.
  • This occurs for two point objects separated by the angle θ = 1 . 22 λ D size 12{θ=1 "." "22" { {λ} over {D} } } {} , where λ size 12{λ} {} is the wavelength of light (or other electromagnetic radiation) and D size 12{D} {} is the diameter of the aperture, lens, mirror, etc. This equation also gives the angular spreading of a source of light having a diameter D size 12{D} {} .

Conceptual questions

A beam of light always spreads out. Why can a beam not be created with parallel rays to prevent spreading? Why can lenses, mirrors, or apertures not be used to correct the spreading?

Got questions? Get instant answers now!

Problems&Exercises

The 300-m-diameter Arecibo radio telescope pictured in [link] detects radio waves with a 4.00 cm average wavelength.

(a) What is the angle between two just-resolvable point sources for this telescope?

(b) How close together could these point sources be at the 2 million light year distance of the Andromeda galaxy?

(a) 1 . 63 × 10 4 rad size 12{1 "." "63" times "10" rSup { size 8{ - 4} } `"rad"} {}

(b) 326 ly

Got questions? Get instant answers now!

Assuming the angular resolution found for the Hubble Telescope in [link] , what is the smallest detail that could be observed on the Moon?

Got questions? Get instant answers now!

Diffraction spreading for a flashlight is insignificant compared with other limitations in its optics, such as spherical aberrations in its mirror. To show this, calculate the minimum angular spreading of a flashlight beam that is originally 5.00 cm in diameter with an average wavelength of 600 nm.

1 . 46 × 10 5 rad size 12{1 "." "46" times "10" rSup { size 8{ - 5} } `"rad"} {}

Got questions? Get instant answers now!

(a) What is the minimum angular spread of a 633-nm wavelength He-Ne laser beam that is originally 1.00 mm in diameter?

(b) If this laser is aimed at a mountain cliff 15.0 km away, how big will the illuminated spot be?

(c) How big a spot would be illuminated on the Moon, neglecting atmospheric effects? (This might be done to hit a corner reflector to measure the round-trip time and, hence, distance.) Explicitly show how you follow the steps in Problem-Solving Strategies for Wave Optics .

Got questions? Get instant answers now!

A telescope can be used to enlarge the diameter of a laser beam and limit diffraction spreading. The laser beam is sent through the telescope in opposite the normal direction and can then be projected onto a satellite or the Moon.

(a) If this is done with the Mount Wilson telescope, producing a 2.54-m-diameter beam of 633-nm light, what is the minimum angular spread of the beam?

(b) Neglecting atmospheric effects, what is the size of the spot this beam would make on the Moon, assuming a lunar distance of 3.84 × 10 8 m ?

(a) 3 . 04 × 10 7 rad size 12{3 "." "04" times "10" rSup { size 8{ - 7} } `"rad"} {}

(b) Diameter of 235 m

Got questions? Get instant answers now!

The limit to the eye’s acuity is actually related to diffraction by the pupil.

(a) What is the angle between two just-resolvable points of light for a 3.00-mm-diameter pupil, assuming an average wavelength of 550 nm?

(b) Take your result to be the practical limit for the eye. What is the greatest possible distance a car can be from you if you can resolve its two headlights, given they are 1.30 m apart?

(c) What is the distance between two just-resolvable points held at an arm’s length (0.800 m) from your eye?

(d) How does your answer to (c) compare to details you normally observe in everyday circumstances?

Got questions? Get instant answers now!

What is the minimum diameter mirror on a telescope that would allow you to see details as small as 5.00 km on the Moon some 384,000 km away? Assume an average wavelength of 550 nm for the light received.

5.15 cm

Got questions? Get instant answers now!

You are told not to shoot until you see the whites of their eyes. If the eyes are separated by 6.5 cm and the diameter of your pupil is 5.0 mm, at what distance can you resolve the two eyes using light of wavelength 555 nm?

Got questions? Get instant answers now!

(a) The planet Pluto and its Moon Charon are separated by 19,600 km. Neglecting atmospheric effects, should the 5.08-m-diameter Mount Palomar telescope be able to resolve these bodies when they are 4 . 50 × 10 9 km size 12{4 "." "50" times "10" rSup { size 8{9} } `"km"} {} from Earth? Assume an average wavelength of 550 nm.

(b) In actuality, it is just barely possible to discern that Pluto and Charon are separate bodies using an Earth-based telescope. What are the reasons for this?

(a) Yes. Should easily be able to discern.

(b) The fact that it is just barely possible to discern that these are separate bodies indicates the severity of atmospheric aberrations.

Got questions? Get instant answers now!

The headlights of a car are 1.3 m apart. What is the maximum distance at which the eye can resolve these two headlights? Take the pupil diameter to be 0.40 cm.

Got questions? Get instant answers now!

When dots are placed on a page from a laser printer, they must be close enough so that you do not see the individual dots of ink. To do this, the separation of the dots must be less than Raleigh’s criterion. Take the pupil of the eye to be 3.0 mm and the distance from the paper to the eye of 35 cm; find the minimum separation of two dots such that they cannot be resolved. How many dots per inch (dpi) does this correspond to?

Got questions? Get instant answers now!

Unreasonable Results

An amateur astronomer wants to build a telescope with a diffraction limit that will allow him to see if there are people on the moons of Jupiter.

(a) What diameter mirror is needed to be able to see 1.00 m detail on a Jovian Moon at a distance of 7 . 50 × 10 8 km size 12{7 "." "50" times "10" rSup { size 8{8} } `"km"} {} from Earth? The wavelength of light averages 600 nm.

(b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?

Got questions? Get instant answers now!

Construct Your Own Problem

Consider diffraction limits for an electromagnetic wave interacting with a circular object. Construct a problem in which you calculate the limit of angular resolution with a device, using this circular object (such as a lens, mirror, or antenna) to make observations. Also calculate the limit to spatial resolution (such as the size of features observable on the Moon) for observations at a specific distance from the device. Among the things to be considered are the wavelength of electromagnetic radiation used, the size of the circular object, and the distance to the system or phenomenon being observed.

Got questions? Get instant answers now!
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask