<< Chapter < Page Chapter >> Page >

where B is the bulk modulus (see [link] ), V 0 size 12{V rSub { size 8{0} } } {} is the original volume, and F A size 12{ { {F} over {A} } } {} is the force per unit area applied uniformly inward on all surfaces. Note that no bulk moduli are given for gases.

What are some examples of bulk compression of solids and liquids? One practical example is the manufacture of industrial-grade diamonds by compressing carbon with an extremely large force per unit area. The carbon atoms rearrange their crystalline structure into the more tightly packed pattern of diamonds. In nature, a similar process occurs deep underground, where extremely large forces result from the weight of overlying material. Another natural source of large compressive forces is the pressure created by the weight of water, especially in deep parts of the oceans. Water exerts an inward force on all surfaces of a submerged object, and even on the water itself. At great depths, water is measurably compressed, as the following example illustrates.

Calculating change in volume with deformation: how much is water compressed at great ocean depths?

Calculate the fractional decrease in volume ( Δ V V 0 size 12{ { {ΔV} over {V rSub { size 8{0} } } } } {} ) for seawater at 5.00 km depth, where the force per unit area is 5 . 00 × 10 7 N / m 2 size 12{5 "." "00" times "10" rSup { size 8{7} } N/m rSup { size 8{2} } } {} .

Strategy

Equation Δ V = 1 B F A V 0 is the correct physical relationship. All quantities in the equation except Δ V V 0 are known.

Solution

Solving for the unknown Δ V V 0 gives

Δ V V 0 = 1 B F A . size 12{ { {ΔV} over {V rSub { size 8{0} } } } = { {1} over {B} } { {F} over {A} } } {}

Substituting known values with the value for the bulk modulus B from [link] ,

Δ V V 0 = 5.00 × 10 7 N/m 2 2 . 2 × 10 9 N/m 2 = 0.023 = 2.3%.

Discussion

Although measurable, this is not a significant decrease in volume considering that the force per unit area is about 500 atmospheres (1 million pounds per square foot). Liquids and solids are extraordinarily difficult to compress.

Got questions? Get instant answers now!

Conversely, very large forces are created by liquids and solids when they try to expand but are constrained from doing so—which is equivalent to compressing them to less than their normal volume. This often occurs when a contained material warms up, since most materials expand when their temperature increases. If the materials are tightly constrained, they deform or break their container. Another very common example occurs when water freezes. Water, unlike most materials, expands when it freezes, and it can easily fracture a boulder, rupture a biological cell, or crack an engine block that gets in its way.

Other types of deformations, such as torsion or twisting, behave analogously to the tension, shear, and bulk deformations considered here.

Section summary

  • Hooke's law is given by
    F = k Δ L , size 12{F=kΔL} {}

    where Δ L size 12{ΔL} {} is the amount of deformation (the change in length), F size 12{F} {} is the applied force, and k size 12{k} {} is a proportionality constant that depends on the shape and composition of the object and the direction of the force. The relationship between the deformation and the applied force can also be written as

    Δ L = 1 Y F A L 0 , size 12{ΔL= { {1} over {Y} } { {F} over {A} } L rSub { size 8{0} } } {}

    where Y size 12{Y} {} is Young's modulus , which depends on the substance, A size 12{A} {} is the cross-sectional area, and L 0 size 12{L rSub { size 8{0} } } {} is the original length.

  • The ratio of force to area, F A size 12{ { {F} over {A} } } {} , is defined as stress , measured in N/m 2 .
  • The ratio of the change in length to length, Δ L L 0 size 12{ { {ΔL} over {L rSub { size 8{0} } } } } {} , is defined as strain (a unitless quantity). In other words,
    stress = Y × strain . size 12{"stress"=Y times "strain"} {}
  • The expression for shear deformation is
    Δ x = 1 S F A L 0 , size 12{Δx= { {1} over {S} } { {F} over {A} } L rSub { size 8{0} } } {}

    where S is the shear modulus and F is the force applied perpendicular to L 0 and parallel to the cross-sectional area A .

  • The relationship of the change in volume to other physical quantities is given by
    Δ V = 1 B F A V 0 , size 12{ΔV= { {1} over {B} } { {F} over {A} } V rSub { size 8{0} } } {}

    where B is the bulk modulus, V 0 is the original volume, and F A size 12{ { {F} over {A} } } {} is the force per unit area applied uniformly inward on all surfaces.

Questions & Answers

what does mean opportunity cost?
Aster Reply
what is poetive effect of population growth
Solomon Reply
what is inflation
Nasir Reply
what is demand
Eleni
what is economics
IMLAN Reply
economics theory describes individual behavior as the result of a process of optimization under constraints the objective to be reached being determined by
Kalkidan
Economics is a branch of social science that deal with How to wise use of resource ,s
Kassie
need
WARKISA
Economic Needs: In economics, needs are goods or services that are necessary for maintaining a certain standard of living. This includes things like healthcare, education, and transportation.
Kalkidan
What is demand and supply
EMPEROR Reply
deman means?
Alex
what is supply?
Alex
ex play supply?
Alex
Money market is a branch or segment of financial market where short-term debt instruments are traded upon. The instruments in this market includes Treasury bills, Bonds, Commercial Papers, Call money among other.
murana Reply
good
Kayode
what is money market
umar Reply
Examine the distinction between theory of comparative cost Advantage and theory of factor proportion
Fatima Reply
What is inflation
Bright Reply
a general and ongoing rise in the level of prices in an economy
AI-Robot
What are the factors that affect demand for a commodity
Florence Reply
price
Kenu
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask