<< Chapter < Page | Chapter >> Page > |
The time constant in heart defibrillation is crucial to limiting the time the current flows. If the capacitance in the defibrillation unit is fixed, how would you manipulate resistance in the circuit to adjust the constant ? Would an adjustment of the applied voltage also be needed to ensure that the current delivered has an appropriate value?
When making an ECG measurement, it is important to measure voltage variations over small time intervals. The time is limited by the constant of the circuit—it is not possible to measure time variations shorter than . How would you manipulate and in the circuit to allow the necessary measurements?
Draw two graphs of charge versus time on a capacitor. Draw one for charging an initially uncharged capacitor in series with a resistor, as in the circuit in [link] , starting from . Draw the other for discharging a capacitor through a resistor, as in the circuit in [link] , starting at , with an initial charge . Show at least two intervals of .
When charging a capacitor, as discussed in conjunction with [link] , how long does it take for the voltage on the capacitor to reach emf? Is this a problem?
When discharging a capacitor, as discussed in conjunction with [link] , how long does it take for the voltage on the capacitor to reach zero? Is this a problem?
Referring to [link] , draw a graph of potential difference across the resistor versus time, showing at least two intervals of . Also draw a graph of current versus time for this situation.
A long, inexpensive extension cord is connected from inside the house to a refrigerator outside. The refrigerator doesn’t run as it should. What might be the problem?
In [link] , does the graph indicate the time constant is shorter for discharging than for charging? Would you expect ionized gas to have low resistance? How would you adjust to get a longer time between flashes? Would adjusting affect the discharge time?
An electronic apparatus may have large capacitors at high voltage in the power supply section, presenting a shock hazard even when the apparatus is switched off. A “bleeder resistor” is therefore placed across such a capacitor, as shown schematically in [link] , to bleed the charge from it after the apparatus is off. Why must the bleeder resistance be much greater than the effective resistance of the rest of the circuit? How does this affect the time constant for discharging the capacitor?
The timing device in an automobile’s intermittent wiper system is based on an time constant and utilizes a capacitor and a variable resistor. Over what range must be made to vary to achieve time constants from 2.00 to 15.0 s?
A heart pacemaker fires 72 times a minute, each time a 25.0-nF capacitor is charged (by a battery in series with a resistor) to 0.632 of its full voltage. What is the value of the resistance?
The duration of a photographic flash is related to an time constant, which is for a certain camera. (a) If the resistance of the flash lamp is during discharge, what is the size of the capacitor supplying its energy? (b) What is the time constant for charging the capacitor, if the charging resistance is ?
(a)
(b) 2.00 s
Notification Switch
Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?