<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Define quantum number.
  • Calculate the angle of an angular momentum vector with an axis.
  • Define spin quantum number.

Physical characteristics that are quantized—such as energy, charge, and angular momentum—are of such importance that names and symbols are given to them. The values of quantized entities are expressed in terms of quantum numbers    , and the rules governing them are of the utmost importance in determining what nature is and does. This section covers some of the more important quantum numbers and rules—all of which apply in chemistry, material science, and far beyond the realm of atomic physics, where they were first discovered. Once again, we see how physics makes discoveries which enable other fields to grow.

The energy states of bound systems are quantized , because the particle wavelength can fit into the bounds of the system in only certain ways. This was elaborated for the hydrogen atom, for which the allowed energies are expressed as E n 1/ n 2 , where n = 1, 2, 3, ... . We define n to be the principal quantum number that labels the basic states of a system. The lowest-energy state has n = 1 , the first excited state has n = 2 , and so on. Thus the allowed values for the principal quantum number are

n = 1, 2, 3, ... . size 12{n=1, 2, 3, "." "." "." } {}

This is more than just a numbering scheme, since the energy of the system, such as the hydrogen atom, can be expressed as some function of n size 12{n} {} , as can other characteristics (such as the orbital radii of the hydrogen atom).

The fact that the magnitude of angular momentum is quantized was first recognized by Bohr in relation to the hydrogen atom; it is now known to be true in general. With the development of quantum mechanics, it was found that the magnitude of angular momentum L size 12{L} {} can have only the values

L = l l + 1 h size 12{L= sqrt {l left (l+1 right )} { {h} over {2π} } } {} l = 0, 1, 2, ... , n 1 , size 12{ left (l=0, 1, 2, "." "." "." ,n - 1 right )} {}

where l size 12{l} {} is defined to be the angular momentum quantum number    . The rule for l size 12{l} {} in atoms is given in the parentheses. Given n size 12{n} {} , the value of l size 12{l} {} can be any integer from zero up to n 1 size 12{n - 1} {} . For example, if n = 4 size 12{n=4} {} , then l size 12{l} {} can be 0, 1, 2, or 3.

Note that for n = 1 size 12{n=1} {} , l size 12{l} {} can only be zero. This means that the ground-state angular momentum for hydrogen is actually zero, not h / 2 π as Bohr proposed. The picture of circular orbits is not valid, because there would be angular momentum for any circular orbit. A more valid picture is the cloud of probability shown for the ground state of hydrogen in [link] . The electron actually spends time in and near the nucleus. The reason the electron does not remain in the nucleus is related to Heisenberg’s uncertainty principle—the electron’s energy would have to be much too large to be confined to the small space of the nucleus. Now the first excited state of hydrogen has n = 2 size 12{n=2} {} , so that l size 12{l} {} can be either 0 or 1, according to the rule in L = l l + 1 h size 12{L= sqrt {l left (l+1 right )} { {h} over {2π} } } {} . Similarly, for n = 3 size 12{n=3} {} , l size 12{l} {} can be 0, 1, or 2. It is often most convenient to state the value of l size 12{l} {} , a simple integer, rather than calculating the value of L size 12{L} {} from L = l l + 1 h size 12{L= sqrt {l left (l+1 right )} { {h} over {2π} } } {} . For example, for l = 2 size 12{l=2} {} , we see that

L = 2 2 + 1 h = 6 h = 0 . 390 h = 2 . 58 × 10 34 J s . size 12{L= sqrt {2 left (2+1 right )} { {h} over {2π} } = sqrt {6} { {h} over {2π} } =0 "." "390"h=2 "." "58" times "10" rSup { size 8{ - "34"} } " J" cdot s} {}

Questions & Answers

what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
what is chemistry
Imoh Reply
what is chemistry
Damilola
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask