<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Explain Newton’s third law of motion with respect to stress and deformation.
  • Describe the restoring force and displacement.
  • Use Hooke’s law of deformation, and calculate stored energy in a spring.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 3.B.3.3 The student can analyze data to identify qualitative or quantitative relationships between given values and variables (i.e., force, displacement, acceleration, velocity, period of motion, frequency, spring constant, string length, mass) associated with objects in oscillatory motion to use that data to determine the value of an unknown. (S.P. 2.2, 5.1)
  • 3.B.3.4 The student is able to construct a qualitative and/or a quantitative explanation of oscillatory behavior given evidence of a restoring force. (S.P. 2.2, 6.2)
In this figure a hand holding a ruler tightly at the bottom is shown. The other hand pulls the top of the ruler and then releases it. Then the ruler starts vibrating, and oscillates around the equilibrium position. A vertical line is shown to mark the equilibrium position. A curved double-headed arrow shows the span of the oscillation.
When displaced from its vertical equilibrium position, this plastic ruler oscillates back and forth because of the restoring force opposing displacement. When the ruler is on the left, there is a force to the right, and vice versa.

Newton’s first law implies that an object oscillating back and forth is experiencing forces. Without force, the object would move in a straight line at a constant speed rather than oscillate. Consider, for example, plucking a plastic ruler to the left as shown in [link] . The deformation of the ruler creates a force in the opposite direction, known as a restoring force    . Once released, the restoring force causes the ruler to move back toward its stable equilibrium position, where the net force on it is zero. However, by the time the ruler gets there, it gains momentum and continues to move to the right, producing the opposite deformation. It is then forced to the left, back through equilibrium, and the process is repeated until dissipative forces dampen the motion. These forces remove mechanical energy from the system, gradually reducing the motion until the ruler comes to rest.

The simplest oscillations occur when the restoring force is directly proportional to displacement. When stress and strain were covered in Newton’s Third Law of Motion , the name was given to this relationship between force and displacement was Hooke’s law:

F = kx. size 12{F= - ital "kx"} {}

Here, F size 12{F} {} is the restoring force, x size 12{x} {} is the displacement from equilibrium or deformation    , and k size 12{k} {} is a constant related to the difficulty in deforming the system. The minus sign indicates the restoring force is in the direction opposite to the displacement.

A series of illustrations of vibrating plastic rulers is shown demonstrating Hooke’s law.
(a) The plastic ruler has been released, and the restoring force is returning the ruler to its equilibrium position. (b) The net force is zero at the equilibrium position, but the ruler has momentum and continues to move to the right. (c) The restoring force is in the opposite direction. It stops the ruler and moves it back toward equilibrium again. (d) Now the ruler has momentum to the left. (e) In the absence of damping (caused by frictional forces), the ruler reaches its original position. From there, the motion will repeat itself.
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask