<< Chapter < Page Chapter >> Page >

[link] shows how viscosity is measured for a fluid. Two parallel plates have the specific fluid between them. The bottom plate is held fixed, while the top plate is moved to the right, dragging fluid with it. The layer (or lamina) of fluid in contact with either plate does not move relative to the plate, and so the top layer moves at v size 12{v} {} while the bottom layer remains at rest. Each successive layer from the top down exerts a force on the one below it, trying to drag it along, producing a continuous variation in speed from v size 12{v} {} to 0 as shown. Care is taken to insure that the flow is laminar; that is, the layers do not mix. The motion in [link] is like a continuous shearing motion. Fluids have zero shear strength, but the rate at which they are sheared is related to the same geometrical factors A size 12{A} {} and L size 12{L} {} as is shear deformation for solids.

The figure shows the laminar flow of fluid between two rectangular plates each of area A. The bottom plate is shown as fixed. The distance between the plates is L. The top plate is shown to be pushed to right with a force F. The direction of movement of the layer of fluid in contact with the top plate is also toward right with velocity v. The fluid in contact with the plate in the bottom is shown to be in rest with v equals zero. As we see through the layers above the one on the bottom plate, each show a small displacement toward right in increasing order of value with the topmost layer showing the maximum.
The graphic shows laminar flow of fluid between two plates of area A size 12{A} {} . The bottom plate is fixed. When the top plate is pushed to the right, it drags the fluid along with it.

A force F size 12{F} {} is required to keep the top plate in [link] moving at a constant velocity v size 12{v} {} , and experiments have shown that this force depends on four factors. First, F size 12{F} {} is directly proportional to v size 12{v} {} (until the speed is so high that turbulence occurs—then a much larger force is needed, and it has a more complicated dependence on v size 12{v} {} ). Second, F size 12{F} {} is proportional to the area A size 12{A} {} of the plate. This relationship seems reasonable, since A size 12{A} {} is directly proportional to the amount of fluid being moved. Third, F size 12{F} {} is inversely proportional to the distance between the plates L size 12{L} {} . This relationship is also reasonable; L size 12{L} {} is like a lever arm, and the greater the lever arm, the less force that is needed. Fourth, F size 12{F} {} is directly proportional to the coefficient of viscosity , η size 12{η} {} . The greater the viscosity, the greater the force required. These dependencies are combined into the equation

F = η vA L , size 12{F=η { { ital "vA"} over {L} } } {}

which gives us a working definition of fluid viscosity     η size 12{η} {} . Solving for η size 12{η} {} gives

η = FL vA , size 12{F=η { { ital "FL"} over { ital "vA"} } } {}

which defines viscosity in terms of how it is measured. The SI unit of viscosity is N m/ [ ( m/s ) m 2 ] = ( N/m 2 ) s or Pa s size 12{N cdot "m/" \[ \( "m/s" \) m rSup { size 8{2} } \] = \( "N/m" rSup { size 8{2} } \) "sorPa" cdot s} {} . [link] lists the coefficients of viscosity for various fluids.

Viscosity varies from one fluid to another by several orders of magnitude. As you might expect, the viscosities of gases are much less than those of liquids, and these viscosities are often temperature dependent. The viscosity of blood can be reduced by aspirin consumption, allowing it to flow more easily around the body. (When used over the long term in low doses, aspirin can help prevent heart attacks, and reduce the risk of blood clotting.)

Laminar flow confined to tubes—poiseuille's law

What causes flow? The answer, not surprisingly, is pressure difference. In fact, there is a very simple relationship between horizontal flow and pressure. Flow rate Q size 12{Q} {} is in the direction from high to low pressure. The greater the pressure differential between two points, the greater the flow rate. This relationship can be stated as

Q = P 2 P 1 R , size 12{Q= { {P rSub { size 8{2} } - P rSub { size 8{1} } } over {R} } } {}

where P 1 size 12{P rSub { size 8{1} } } {} and P 2 size 12{P rSub { size 8{2} } } {} are the pressures at two points, such as at either end of a tube, and R size 12{R} {} is the resistance to flow. The resistance R size 12{R} {} includes everything, except pressure, that affects flow rate. For example, R size 12{R} {} is greater for a long tube than for a short one. The greater the viscosity of a fluid, the greater the value of R size 12{R} {} . Turbulence greatly increases R size 12{R} {} , whereas increasing the diameter of a tube decreases R size 12{R} {} .

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask