<< Chapter < Page Chapter >> Page >

F net = ma size 12{F rSub { size 8{"net"} } = ital "ma"} {} .

From the free-body diagram we see that F net = F s w size 12{F rSub { size 8{"net"} } =F rSub { size 8{s} } - w} {} , so that

F s w = ma size 12{F rSub { size 8{s} } - w= ital "ma"} {} .

Solving for F s size 12{F rSub { size 8{s} } } {} gives an equation with only one unknown:

F s = ma + w size 12{F rSub { size 8{s} } = ital "ma"+w} {} ,

or, because w = mg , simply

F s = ma + mg size 12{F rSub { size 8{s} } = ital "ma"+ ital "mg"} {} .

No assumptions were made about the acceleration, and so this solution should be valid for a variety of accelerations in addition to the ones in this exercise.

Solution for (a)

In this part of the problem, a = 1.20 m/s 2 size 12{a=1 "." "20"" m/s" rSup { size 8{2} } } {} , so that

F s = ( 75 . 0 kg ) ( 1 . 20 m/s 2 ) + ( 75 . 0 kg ) ( 9 . 80 m/s 2 ) size 12{F rSub { size 8{s} } = \( "75" "." "0 kg" \) \( 1 "." "20 m/s" rSup { size 8{2} } \) + \( "75" "." "0 kg" \) \( 9 "." "80 m/s" rSup { size 8{2} } \) } {} ,

yielding

F s = 8 25 N size 12{F rSub { size 8{s} } =8"25 N"} {} .

Discussion for (a)

This is about 185 lb. What would the scale have read if he were stationary? Since his acceleration would be zero, the force of the scale would be equal to his weight:

F net = ma = 0 = F s w F s = w = mg F s = ( 75.0 kg ) ( 9. 80 m/s 2 ) F s = 735 N. alignl { stack { size 12{F rSub { size 8{"net"} } = ital "ma"=0=F rSub { size 8{s} } - w} {} #F rSub { size 8{s} } =w= ital "mg" {} # F rSub { size 8{s} } = \( "75" "." 0" kg" \) \( 9 "." "80 m/s" rSup { size 8{2} } \) {} #F rSub { size 8{s} } ="735"" N" "." {} } } {}

So, the scale reading in the elevator is greater than his 735-N (165 lb) weight. This means that the scale is pushing up on the person with a force greater than his weight, as it must in order to accelerate him upward. Clearly, the greater the acceleration of the elevator, the greater the scale reading, consistent with what you feel in rapidly accelerating versus slowly accelerating elevators.

Solution for (b)

Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more than his weight? For any constant velocity—up, down, or stationary—acceleration is zero because a = Δ v Δ t size 12{a= { {Δv} over {Δt} } } {} , and Δ v = 0 size 12{Δv=0} {} .

Thus,

F s = ma + mg = 0 + mg size 12{F rSub { size 8{s} } = ital "ma"+ ital "mg"=0+ ital "mg"} {} .

Now

F s = ( 75 . 0 kg ) ( 9 . 80 m/s 2 ) size 12{F rSub { size 8{s} } = \( "75" "." "0 kg" \) \( 9 "." "80 m/s" rSup { size 8{2} } \) } {} ,

which gives

F s = 7 35 N size 12{F rSub { size 8{s} } =7"35 N"} {} .

Discussion for (b)

The scale reading is 735 N, which equals the person’s weight. This will be the case whenever the elevator has a constant velocity—moving up, moving down, or stationary.

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When an elevator accelerates downward, a size 12{a} {} is negative, and the scale reading is less than the weight of the person, until a constant downward velocity is reached, at which time the scale reading again becomes equal to the person’s weight. If the elevator is in free-fall and accelerating downward at g size 12{g} {} , then the scale reading will be zero and the person will appear to be weightless.

Integrating concepts: newton’s laws of motion and kinematics

Physics is most interesting and most powerful when applied to general situations that involve more than a narrow set of physical principles. Newton’s laws of motion can also be integrated with other concepts that have been discussed previously in this text to solve problems of motion. For example, forces produce accelerations, a topic of kinematics, and hence the relevance of earlier chapters. When approaching problems that involve various types of forces, acceleration, velocity, and/or position, use the following steps to approach the problem:

Problem-Solving Strategy

Step 1. Identify which physical principles are involved . Listing the givens and the quantities to be calculated will allow you to identify the principles involved.
Step 2. Solve the problem using strategies outlined in the text . If these are available for the specific topic, you should refer to them. You should also refer to the sections of the text that deal with a particular topic. The following worked example illustrates how these strategies are applied to an integrated concept problem.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask