<< Chapter < Page Chapter >> Page >

Making connections: conservation laws

Angular momentum, like energy and linear momentum, is conserved. This universally applicable law is another sign of underlying unity in physical laws. Angular momentum is conserved when net external torque is zero, just as linear momentum is conserved when the net external force is zero.

Conservation of angular momentum

We can now understand why Earth keeps on spinning. As we saw in the previous example, Δ L = ( net τ ) Δ t size 12{ΔL= \( ital "net"τ \) cdot Δt} {} . This equation means that, to change angular momentum, a torque must act over some period of time. Because Earth has a large angular momentum, a large torque acting over a long time is needed to change its rate of spin. So what external torques are there? Tidal friction exerts torque that is slowing Earth's rotation, but tens of millions of years must pass before the change is very significant. Recent research indicates the length of the day was 18 h some 900 million years ago. Only the tides exert significant retarding torques on Earth, and so it will continue to spin, although ever more slowly, for many billions of years.

What we have here is, in fact, another conservation law. If the net torque is zero , then angular momentum is constant or conserved . We can see this rigorously by considering net τ = Δ L Δ t size 12{"net "τ= { {ΔL} over {Δt} } } {} for the situation in which the net torque is zero. In that case,

net τ = 0 size 12{"net "τ=0} {}

implying that

Δ L Δ t = 0 . size 12{ { {ΔL} over {Δt} } =0} {}

If the change in angular momentum Δ L size 12{ΔL} {} is zero, then the angular momentum is constant; thus,

L = constant net τ = 0 size 12{L="constant " left ("net "τ=0 right )} {}

or

L = L net τ = 0 . size 12{L=L'" " left ("net "τ=0 right )} {}

These expressions are the law of conservation of angular momentum    . Conservation laws are as scarce as they are important.

An example of conservation of angular momentum is seen in [link] , in which an ice skater is executing a spin. The net torque on her is very close to zero, because there is relatively little friction between her skates and the ice and because the friction is exerted very close to the pivot point. (Both F size 12{F} {} and r size 12{r} {} are small, and so τ size 12{τ} {} is negligibly small.) Consequently, she can spin for quite some time. She can do something else, too. She can increase her rate of spin by pulling her arms and legs in. Why does pulling her arms and legs in increase her rate of spin? The answer is that her angular momentum is constant, so that

L = L . size 12{L=L'} {}

Expressing this equation in terms of the moment of inertia,

= I ω , size 12{Iω=I'ω'} {}

where the primed quantities refer to conditions after she has pulled in her arms and reduced her moment of inertia. Because I size 12{I'} {} is smaller, the angular velocity ω size 12{ω'} {} must increase to keep the angular momentum constant. The change can be dramatic, as the following example shows.

The image a shows an ice skater spinning on the tip of her skate with both her arms and one leg extended. The image b shows the ice skater spinning on the tip of one skate, with her arms crossed and one leg supported on another.
(a) An ice skater is spinning on the tip of her skate with her arms extended. Her angular momentum is conserved because the net torque on her is negligibly small. In the next image, her rate of spin increases greatly when she pulls in her arms, decreasing her moment of inertia. The work she does to pull in her arms results in an increase in rotational kinetic energy.

Calculating the angular momentum of a spinning skater

Suppose an ice skater, such as the one in [link] , is spinning at 0.800 rev/ s with her arms extended. She has a moment of inertia of 2 . 34 kg m 2 size 12{2 "." "34"`"kg" cdot m rSup { size 8{2} } } {} with her arms extended and of 0 . 363 kg m 2 size 12{0 "." "363"`"kg" cdot m rSup { size 8{2} } } {} with her arms close to her body. (These moments of inertia are based on reasonable assumptions about a 60.0-kg skater.) (a) What is her angular velocity in revolutions per second after she pulls in her arms? (b) What is her rotational kinetic energy before and after she does this?

Questions & Answers

what is mutation
Janga Reply
what is a cell
Sifune Reply
how is urine form
Sifune
what is antagonism?
mahase Reply
classification of plants, gymnosperm features.
Linsy Reply
what is the features of gymnosperm
Linsy
how many types of solid did we have
Samuel Reply
what is an ionic bond
Samuel
What is Atoms
Daprince Reply
what is fallopian tube
Merolyn
what is bladder
Merolyn
what's bulbourethral gland
Eduek Reply
urine is formed in the nephron of the renal medulla in the kidney. It starts from filtration, then selective reabsorption and finally secretion
onuoha Reply
State the evolution relation and relevance between endoplasmic reticulum and cytoskeleton as it relates to cell.
Jeremiah
what is heart
Konadu Reply
how is urine formed in human
Konadu
how is urine formed in human
Rahma
what is the diference between a cavity and a canal
Pelagie Reply
what is the causative agent of malaria
Diamond
malaria is caused by an insect called mosquito.
Naomi
Malaria is cause by female anopheles mosquito
Isaac
Malaria is caused by plasmodium Female anopheles mosquitoe is d carrier
Olalekan
a canal is more needed in a root but a cavity is a bad effect
Commander
what are pathogens
Don Reply
In biology, a pathogen (Greek: πάθος pathos "suffering", "passion" and -γενής -genēs "producer of") in the oldest and broadest sense, is anything that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ. The term pathogen came into use in the 1880s.[1][2
Zainab
A virus
Commander
Definition of respiration
Muhsin Reply
respiration is the process in which we breath in oxygen and breath out carbon dioxide
Achor
how are lungs work
Commander
where does digestion begins
Achiri Reply
in the mouth
EZEKIEL
what are the functions of follicle stimulating harmones?
Rashima Reply
stimulates the follicle to release the mature ovum into the oviduct
Davonte
what are the functions of Endocrine and pituitary gland
Chinaza
endocrine secrete hormone and regulate body process
Achor
while pituitary gland is an example of endocrine system and it's found in the Brain
Achor
what's biology?
Egbodo Reply
Biology is the study of living organisms, divided into many specialized field that cover their morphology, physiology,anatomy, behaviour,origin and distribution.
Lisah
biology is the study of life.
Alfreda
Biology is the study of how living organisms live and survive in a specific environment
Sifune
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask