<< Chapter < Page Chapter >> Page >
P + 1 2 ρv 2 + ρ gh Q = power . size 12{ left (P+ { {1} over {2} } ρv rSup { size 8{2} } +ρ ital "gh" right )Q="power"} {}

Each term has a clear physical meaning. For example, PQ size 12{ ital "PQ"} {} is the power supplied to a fluid, perhaps by a pump, to give it its pressure P size 12{P} {} . Similarly, 1 2 ρv 2 Q size 12{ { { size 8{1} } over { size 8{2} } } ρv rSup { size 8{2} } Q} {} is the power supplied to a fluid to give it its kinetic energy. And ρ ghQ size 12{ρ ital "ghQ"} {} is the power going to gravitational potential energy.

Making connections: power

Power is defined as the rate of energy transferred, or E / t size 12{E/t} {} . Fluid flow involves several types of power. Each type of power is identified with a specific type of energy being expended or changed in form.

Calculating power in a moving fluid

Suppose the fire hose in the previous example is fed by a pump that receives water through a hose with a 6.40-cm diameter coming from a hydrant with a pressure of 0 . 700 × 10 6 N/m 2 size 12{0 "." "700" times "10" rSup { size 8{6} } `"N/m" rSup { size 8{2} } } {} . What power does the pump supply to the water?

Strategy

Here we must consider energy forms as well as how they relate to fluid flow. Since the input and output hoses have the same diameters and are at the same height, the pump does not change the speed of the water nor its height, and so the water's kinetic energy and gravitational potential energy are unchanged. That means the pump only supplies power to increase water pressure by 0 . 92 × 10 6 N/m 2 size 12{0 "." "92" times "10" rSup { size 8{6} } `"N/m" rSup { size 8{2} } } {} (from 0.700 × 10 6 N/m 2 size 12{0 "." "700" times "10" rSup { size 8{6} } `"N/m" rSup { size 8{2} } } {} to 1.62 × 10 6 N/m 2 size 12{1 "." "62" times "10" rSup { size 8{6} } `"N/m" rSup { size 8{2} } } {} ).

Solution

As discussed above, the power associated with pressure is

power = PQ = 0.920 × 10 6 N/m 2 40 . 0 × 10 3 m 3 /s . = 3 . 68 × 10 4 W = 36 . 8 kW .

Discussion

Such a substantial amount of power requires a large pump, such as is found on some fire trucks. (This kilowatt value converts to about 50 hp.) The pump in this example increases only the water's pressure. If a pump—such as the heart—directly increases velocity and height as well as pressure, we would have to calculate all three terms to find the power it supplies.

Got questions? Get instant answers now!

Summary

  • Power in fluid flow is given by the equation P 1 + 1 2 ρv 2 + ρ gh Q = power , size 12{ left (P rSub { size 8{1} } + { {1} over {2} } ρv rSup { size 8{2} } +ρ ital "gh" right )Q="power"} {} where the first term is power associated with pressure, the second is power associated with velocity, and the third is power associated with height.

Conceptual questions

Based on Bernoulli's equation, what are three forms of energy in a fluid? (Note that these forms are conservative, unlike heat transfer and other dissipative forms not included in Bernoulli's equation.)

Got questions? Get instant answers now!

Water that has emerged from a hose into the atmosphere has a gauge pressure of zero. Why? When you put your hand in front of the emerging stream you feel a force, yet the water's gauge pressure is zero. Explain where the force comes from in terms of energy.

Got questions? Get instant answers now!

The old rubber boot shown in [link] has two leaks. To what maximum height can the water squirt from Leak 1? How does the velocity of water emerging from Leak 2 differ from that of leak 1? Explain your responses in terms of energy.

The picture shows a boot filled with water. The water is shown emerging from two leaks in the old boot, one in front and another at the back. The leaks are at the same height. The leaks are labeled as Leak 1 and Leak 2 respectively.
Water emerges from two leaks in an old boot.
Got questions? Get instant answers now!

Water pressure inside a hose nozzle can be less than atmospheric pressure due to the Bernoulli effect. Explain in terms of energy how the water can emerge from the nozzle against the opposing atmospheric pressure.

Got questions? Get instant answers now!

Problems&Exercises

Hoover Dam on the Colorado River is the highest dam in the United States at 221 m, with an output of 1300 MW. The dam generates electricity with water taken from a depth of 150 m and an average flow rate of 650 m 3 /s size 12{"650"`m rSup { size 8{3} } "/s"} {} . (a) Calculate the power in this flow. (b) What is the ratio of this power to the facility's average of 680 MW?

(a) 9.56 × 10 8 W

(b) 1.4

Got questions? Get instant answers now!

A frequently quoted rule of thumb in aircraft design is that wings should produce about 1000 N of lift per square meter of wing. (The fact that a wing has a top and bottom surface does not double its area.) (a) At takeoff, an aircraft travels at 60.0 m/s, so that the air speed relative to the bottom of the wing is 60.0 m/s. Given the sea level density of air to be 1 . 29 kg/m 3 size 12{1 "." "29"`"kg/m" rSup { size 8{3} } } {} , how fast must it move over the upper surface to create the ideal lift? (b) How fast must air move over the upper surface at a cruising speed of 245 m/s and at an altitude where air density is one-fourth that at sea level? (Note that this is not all of the aircraft's lift—some comes from the body of the plane, some from engine thrust, and so on. Furthermore, Bernoulli's principle gives an approximate answer because flow over the wing creates turbulence.)

Got questions? Get instant answers now!

The left ventricle of a resting adult's heart pumps blood at a flow rate of 83 . 0 cm 3 /s size 12{"83" "." 0`"cm" rSup { size 8{3} } "/s"} {} , increasing its pressure by 110 mm Hg, its speed from zero to 30.0 cm/s, and its height by 5.00 cm. (All numbers are averaged over the entire heartbeat.) Calculate the total power output of the left ventricle. Note that most of the power is used to increase blood pressure.

1.26 W

Got questions? Get instant answers now!

A sump pump (used to drain water from the basement of houses built below the water table) is draining a flooded basement at the rate of 0.750 L/s, with an output pressure of 3.00 × 10 5 N/m 2 size 12{3 "." "00" times "10" rSup { size 8{5} } `"N/m" rSup { size 8{2} } } {} . (a) The water enters a hose with a 3.00-cm inside diameter and rises 2.50 m above the pump. What is its pressure at this point? (b) The hose goes over the foundation wall, losing 0.500 m in height, and widens to 4.00 cm in diameter. What is the pressure now? You may neglect frictional losses in both parts of the problem.

Got questions? Get instant answers now!

Test prep for ap courses

A horizontally oriented pipe has a diameter of 5.6 cm and is filled with water. The pipe draws water from a reservoir that is initially at rest. A manually operated plunger provides a force of 440 N in the pipe. Assuming that the other end of the pipe is open to the air, with what speed does the water emerge from the pipe?

  1. 12 m/s
  2. 19 m/s
  3. 150 m/s
  4. 190 m/s

(a)

Got questions? Get instant answers now!

A 3.5-cm-diameter pipe contains a pumping mechanism that provides a force of 320 N to push water up into a tall building. Upon entering the piston mechanism, the water is flowing at a rate of 2.5 m/s. The water is then pumped to a level 21 m higher where the other end of the pipe is open to the air. With what speed does water leave the pipe?

Got questions? Get instant answers now!

A large container of water is open to the air, and it develops a hole of area 10 cm 2 at a point 5 m below the surface of the water. What is the flow rate (m 3 ⁄s) of the water emerging from this hole?

  1. 99 m 3 ⁄s
  2. 9.9 m 3 ⁄s
  3. 0.099 m 3 ⁄s
  4. 0.0099 m 3 ⁄s

(d)

Got questions? Get instant answers now!

A pipe is tapered so that the large end has a diameter twice as large as the small end. What must be the gauge pressure (the difference between pressure at the large end and pressure at the small end) in order for water to emerge from the small end with a speed of 12 m/s if the small end is elevated 8 m above the large end of the pipe?

Got questions? Get instant answers now!

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask